Advertisement

A study on the supercapacitive behavior of zinc substituted manganese ferrite nanoparticles

  • A. Ghasemi
  • M. Kheirmand
  • H. Heli
Original Paper
  • 9 Downloads

Abstract

Synthesis and applications of novel nanomaterials in energy storage are of great importance. In this study, nanoparticles of zinc substituted manganese ferrite (Zn0.5Mn0.5Fe2O4) were synthesized by a simple coprecipitation method. The synthesized nanoparticles were then characterized by field emission scanning electron microscopy, FTIR spectroscopy, atomic force microscopy and X-ray diffraction. The nanoparticles had a spherical morphology with a diameter of ~ 30 nm. The nanoparticles were electrochemically evaluated as a supercapacitor electrode material by cyclic voltammetry, electrochemical impedance spectroscopy and charge/discharge cycling. The nanoparticles represented both double layer and pseudocapacitive behaviors with a specific capacitance of 77.9 F g− 1 at a charge/discharge current of 1.0 A g− 1. The specific energy and power of the nanoparticles were 13.2 Wh g− 1 and 563 W g− 1, respectively. The nanoparticles retained more than 87% of the initial capacitance after 1000 charge/discharge cycles.

Keywords

Supercapacitor Substituted ferrite Magnetic nanoparticles Pseudocapacitor 

Notes

Acknowledgements

We would like to thank the Research Council of Shiraz University of Medical Sciences (18213) for supporting this research. We also thank the Research Councils of Yasouj University.

References

  1. 1.
    P. Simon, Y. Gogotsi, Nat. mater. 7, 845 (2008)CrossRefGoogle Scholar
  2. 2.
    L.x. Feng, L.G. Ren, T.Y. Xiang, Sci. China Technol. Sci. 58, 1799 (2015)CrossRefGoogle Scholar
  3. 3.
    S.G. Kandalkar, D.S. Dhawale, C.K. Kim, C.D. Lokhande, Synth. Met. 160, 1299 (2010)CrossRefGoogle Scholar
  4. 4.
    C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22, E28 (2010)CrossRefGoogle Scholar
  5. 5.
    L. Shiri, N. Sattarahmady, H. Heli, J. Electroanal. Chem. 719, 143 (2014)CrossRefGoogle Scholar
  6. 6.
    H. Heli, A. Parsa, N. Sattarahmady, J. Electroanal. Chem. 751, 15 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Heli, H. Yadegari, A. Jabbarib, Mater. Chem. Phys. 134, 21 (2012)CrossRefGoogle Scholar
  8. 8.
    V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014)CrossRefGoogle Scholar
  9. 9.
    T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, J. Sol–Gel. Sci. Technol. 57, 330 (2011)CrossRefGoogle Scholar
  10. 10.
    M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, C.H. Chia, Nano 09, 1430002 (2014)CrossRefGoogle Scholar
  11. 11.
    G.A. Snooka, P. Kaob, A.S. Best, J. Power Sources 196, 1 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Ghosh, O. Inganäs, Adv. Mater. 11, 1167 (1999)CrossRefGoogle Scholar
  13. 13.
    N. Sattarahmady, A. Parsa, H. Heli, J. Mater. Sci. 48, 2346 (2013)CrossRefGoogle Scholar
  14. 14.
    N. Sattarahmady, R.D. Vais, H. Heli, J. Appl. Electrochem. 45, 577 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Li, X. Cheng, A. Shashurin, M. Keidar, Graphene 1, 1 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Yadegari, H. Heli, A. Jabbari, J. Solid State Electrochem. 17, 2203 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Heli, H. Yadegari, J. Electroanal. Chem. 713, 103 (2014)CrossRefGoogle Scholar
  18. 18.
    R.C. Pullar, Prog. Mater Sci. 57, 1191 (2012)CrossRefGoogle Scholar
  19. 19.
    D.S. Mathew, R.S. Juang, Chem. Eng. J. 129, 51 (2007)CrossRefGoogle Scholar
  20. 20.
    N. Sattarahmady, M. Heidari, T. Zare, M. Lotfi, H. Heli, Appl. Magn. Reson. 47, 925 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Rana, A. Gallo, R.S. Srivastava, R.D.K. Misra, Acta Biomater 3, 233 (2007)CrossRefGoogle Scholar
  22. 22.
    R. Ito, Y. Machida, T. Sannan, T. Nagai, Int. J. Pharm. 61, 109 (1990)CrossRefGoogle Scholar
  23. 23.
    N. Sattarahmady, N. Azarpira, A. Hosseinpour, H. Heli, T. Zare, J. Drug Deliv. Sci. Technol. 36, 68 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Heli, N. Sattarahmady, G.R. Hatam, F. Reisi, R.D. Vais, Talanta 156–157, 172 (2016)CrossRefGoogle Scholar
  25. 25.
    P.P. Hankare, R.P. Patil, K.M. Garadkar, R. Sasikala, B.K. Chougule, Mater. Res. Bull. 46, 447 (2011)CrossRefGoogle Scholar
  26. 26.
    J.H. Nam, Y.H. Joo, J.H. Lee, J.H. Chang, J.H. Cho, M.P. Chun, B.I. Kim, J. Magn. Magn. Mater. 321, 1389 (2009)CrossRefGoogle Scholar
  27. 27.
    L. Cui, P. Guo, G. Zhang, Q. Li, R. Wang, M. Zhou, L. Ran, X.S. Zhao, Colloids Surf. A 423, 170 (2013)CrossRefGoogle Scholar
  28. 28.
    K.E. Farley, A.C. Marschilok, E.S. Takeuchi, K.J. Takeuchi, Electrochem. Solid-State Lett. 15, A23 (2012)CrossRefGoogle Scholar
  29. 29.
    L. Feng, Y. Zhu, H. Ding, C. Ni, J. Power Sources 267, 430 (2014)CrossRefGoogle Scholar
  30. 30.
    B. Senthilkumar, K.V. Sankar, C. Sanjeeviraja, R.K. Selvan, J. Alloys Compd. 553, 350 (2013)CrossRefGoogle Scholar
  31. 31.
    W. Wang, Q. Hao, W. Lei, X. Xia, X. Wang, J. Power Sources 269, 250 (2014)CrossRefGoogle Scholar
  32. 32.
    V. Venkatachalam, R. Jayavel, Solid state physics AIP conference proceeding 1665, 140016-1 (2015)Google Scholar
  33. 33.
    P. Sen, A. De, Electrochim. Acta 55, 4677 (2010)CrossRefGoogle Scholar
  34. 34.
    D.K. Pawar, S.M. Pawar, P.S. Patil, S.S. Kolekar, J. Alloys Compd. 509, 3587 (2011)CrossRefGoogle Scholar
  35. 35.
    E.K. Heidari, A. Ataie, M.H. Sohi, J.K. Kim, J. Ultrafine Grained Nanostruc. Mater. 48, 27 (2015)Google Scholar
  36. 36.
    B. Senthilkumar, R.K. Selvan, P. Vinothbabu, I. Perelshtein, A. Gedanken, Mater. Chem. Phys. 130, 285 (2011)CrossRefGoogle Scholar
  37. 37.
    R. Wang, Q. Li, L. Cheng, H. Li, B. Wang, X.S. Zhao, P. Guo, Colloids Surf. A 457, 94 (2014)CrossRefGoogle Scholar
  38. 38.
    B. Li, Y. Fu, H. Xia, X. Wang, Mater. Lett. 122, 193 (2014)CrossRefGoogle Scholar
  39. 39.
    D. Zha, P. Xiong, X. Wang, Electrochim. Acta 185, 218 (2015)CrossRefGoogle Scholar
  40. 40.
    B. Wang, P. Guo, H. Bi, Q. Li, G. Zhang, R. Wang, J. Liu, X.S. Zhao, Int. J. Electrochem. Sci. 8, 8966 (2013)Google Scholar
  41. 41.
    Y.P. Lin, N.L. Wu, J. Power Sources 196, 851 (2011)CrossRefGoogle Scholar
  42. 42.
    W. Cai, T. Lai, W. Dai, J. Ye, J. Power Sources 255, 170 (2014)CrossRefGoogle Scholar
  43. 43.
    S.L. Kuo, J.F. Lee, N.L. Wu, J. Electrochem. Soc. 154, A34 (2007)CrossRefGoogle Scholar
  44. 44.
    Shanmugavani,R.K.Selvan, RSC Adv. 4, 27022 (2014)CrossRefGoogle Scholar
  45. 45.
    D.K. Pawar, J.S. Shaikh, B.S. Pawar, S.M. Pawar, P.S. Patil, S.S. Kolekar, J. Porous Mater. 19, 649 (2012)CrossRefGoogle Scholar
  46. 46.
    Shanmugavani,D.Kalpana,R.K.Selvan, Mater. Res. Bull. 71, 133 (2015)CrossRefGoogle Scholar
  47. 47.
    P. Hez, K. Yang, W. Wang, F. Dong, L. Du, Y. Deng, Russ. J. Electrochem. 49, 359 (2013)CrossRefGoogle Scholar
  48. 48.
    V.S. Kumbhar, A.D. Jagadale, N.M. Shinde, C.D. Lokhande, App. Surf. Sci. 259, 39 (2012)CrossRefGoogle Scholar
  49. 49.
    D.H. Deng, H. Pang, J.M. Du, J.W. Deng, S.J. Li, J. Chen, J.S. Zhang, Cryst. Res. Technol. 47, 1032 (2012)CrossRefGoogle Scholar
  50. 50.
    S. Giri, D. Ghosh, A.P. Kharitonov, Ch.K. Das, Funct. Mater. Lett. 5, 1250046 (2012)CrossRefGoogle Scholar
  51. 51.
    W. Zhang, B. Quan, Ch Lee, S.K. Park, X. Li, E. Choi, G. Diao, Y. Piao, ACS Appl. Mater. Interfaces 7, 2404 (2015)CrossRefGoogle Scholar
  52. 52.
    D. Ham, J. Chang, S.H. Pathan, W.Y. Kim, R.S. Mane, B.N. Pawar, O.S. Joo, H. Chung, M.Y. Yoon, S.H. Han,Curr. Appl. Phys. 9, S98 (2009)CrossRefGoogle Scholar
  53. 53.
    M.R. Kale, N.P. Tendolkar, Int. J. Sci. Eng. Res. 4, 12 (2013)Google Scholar
  54. 54.
    Rai,A.L.Sharma,A.K.Thakur, Solid State Ionics 262, 230 (2014)CrossRefGoogle Scholar
  55. 55.
    Bhujunn,M.T.T.Tan,A.S.Shanmugam, Ceram. Int. 42, 6457 (2016)CrossRefGoogle Scholar
  56. 56.
    V.V. Jadhav, M.K. Zate, Sh Liu, M. Naushad, R.S. Mane, K.N. Hui, S.H. Han, Appl. Nanosci. 6, 511 (2016)CrossRefGoogle Scholar
  57. 57.
    N.L. Wu, Y.H. Chen, ECS Trans. 16, 223 (2008)CrossRefGoogle Scholar
  58. 58.
    J.S. Pena, O. Crosnier, T. Brousse, Electrochim. Acta 55, 7511 (2010)CrossRefGoogle Scholar
  59. 59.
    L.J. Li, Sol–Gel Sci. Technol. 58, 677 (2011)CrossRefGoogle Scholar
  60. 60.
    M.K. Zate, S.M.F. Shaikh, V.V. Jadhav, K.K. Tehare, S.S. Kolekar, R.S. Mane, M. Naushad, B.N. Pawar, K.N. Hui, J. Anal. Appl. Pyrolysis 116, 177 (2015)CrossRefGoogle Scholar
  61. 61.
    S.L. Kuo, N.L. Wu, J. Power Sources 162, 1437 (2006)CrossRefGoogle Scholar
  62. 62.
    M. Gotic, I.C. Nagy, S. Popovic, S. Music, Philos. Mag. Lett. 78, 193 (1998)CrossRefGoogle Scholar
  63. 63.
    Z. Tang, P. Liu, J. Guo, Z. Su, C. Yang, Appl. Surf. Sci. 255, 2125 (2008)CrossRefGoogle Scholar
  64. 64.
    M. Zhu, D. Meng, C. Wang, G. Diao, ACS Appl. Mater. Interfaces 5, 6030 (2013)CrossRefGoogle Scholar
  65. 65.
    D.A. Palmer, L.M. Anovitz, J. Solut. Chem. 38, 869 (2009)CrossRefGoogle Scholar
  66. 66.
    E. Barsoukov, J.Ross Macdonald, Impedance Spectroscopy Theory Experiment and Applications, 2nd edn. (Wiley, Hoboken, 2005)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of Chemistry, School of Basic SciencesYasouj UniversityYasoujIran
  2. 2.Nanomedicine and Nanobiology Research CenterShiraz University of Medical SciencesShirazIran

Personalised recommendations