Sono-heterogeneous Fenton system for degradation of AB74 dye over a new tetraaza macrocyclic Schiff base cellulose ligand-loaded Fe3O4 nanoparticles
- 25 Downloads
Abstract
The study detailed herein is related to the synthesis of novel tetraaza macrocyclic Schiff base cellulose ligand: (EDA-g-DAC) via condensation reaction of periodate oxidized developed microcrystalline cellulose (DAC) with ethylenediamine (EDA) was reported. Additionally, tetraaza macrocyclic Schiff base cellulose ligand-loaded Fe3O4 nanoparticles: [(EDA-g-DAC)@Fe3O4] was successfully prepared using in situ chemical co-precipitation of coordinated ferric and ferrous ions in the tetraaza macrocyclic Schiff base cellulose ligand: (EDA-g-DAC) under mild conditions. The synthesized compounds were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). [(EDA-g-DAC)@Fe3O4] was of a narrow size distribution, and exhibited ferromagnetic behaviors with saturation magnetization 24.63 emu g−1. The degradation of Indigo Carmine (AB74) over [(EDA-g-DAC)@Fe3O4] was studied using a coupled ultrasound/heterogeneous or sono-heterogeneous Fenton process. More importantly, US + [(EDA-g-DAC)@Fe3O4] + H2O2 were demonstrated for the first time as a high efficient for the degradation of AB74. The pseudo first-order-reaction constant of US + [(EDA-g-DAC)@Fe3O4] + H2O2 were measured to be 0.0979 min−1. Total Organic Carbon (TOC) and Chemical oxygen demand (COD) removal rates are 0% and 98.7%, respectively. Additionally, the [(EDA-g-DAC)@Fe3O4] showed the higher enhanced sonocatalytic degradation of AB74 than other dyes MB and AY17. Furthermore, the catalysts can be easily recycled within 10 s using an external magnetic field and a constant catalytic activity is retained even after five cycles.
Keywords
Tetraaza macrocyclic Magnetite Sono-heterogeneous Fenton Indigo Carmine (AB74)Notes
Acknowledgements
The authors would personally like to thank Philippe CASSAGHAU and all the staffs of the UMR CNRS5223, (Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France) for their technical help. The authors also would like to thank Pr. BENONISTER David (Oxford University, UK) for English language correction.
References
- 1.W. Fan, B. Yung, P. Huang, X. Chen, Chem. Rev. 22, 13566 (2017)CrossRefGoogle Scholar
- 2.H. Yang, S.J. Bradley, X. Wu, A. Chan, G.I.N. Waterhouse, T. Nann, J. Zhang, P.E. Kruger, S. Ma, S.G. Telfer, ACS Nano. 12, 4594 (2018)CrossRefGoogle Scholar
- 3.S. Tong, C.A. Quinto, L. Zhang, P. Mohindra, G. Bao, ACS Nano. 11, 6808 (2017)CrossRefGoogle Scholar
- 4.R. Mehdaoui, A. El Ghali, W. Cheikhrouhou, E. Beyou, M.H.V. Baouab, Iran. Polym. J. 26, 597 (2017). https://doi.org/10.1007/s13726-017-0546-9 CrossRefGoogle Scholar
- 5.L. Zhang, W.F. Dong, H.B. Sun, Nanoscale 17, 7664 (2013)CrossRefGoogle Scholar
- 6.A. Aftabtalab, H. Sadabadi, J. Pet. Environ. Biotechnol. 6, 1 (2015)Google Scholar
- 7.M. Unni, A.M. Uhl, S. Savliwala, B.H. Savitzky, R. Dhavalikar, N. Garraud, D.P. Arnold, L.F. Kourkoutis, J.S. Andrew, C. Rinaldi, ACS Nano. 11, 2284 (2017)CrossRefGoogle Scholar
- 8.I.S. Smolkova, N.E. Kazantseva, H. Parmar, V. Babayan, P. Smolka, P. Saha, Mater. Chem. Phys. 155, 178 (2015)CrossRefGoogle Scholar
- 9.F. Chen, S. Xie, J. Zhang, R. Liu, Mater. Lett. 112, 177 (2013)CrossRefGoogle Scholar
- 10.J. Safari, Z. Zarnegar, H. Hekmatara, Synth. React. Inorg. 125, 15553 (2015)Google Scholar
- 11.M. Munaz. M.P. Zahara. J.A. Cases, J.J. Radiguez, Appl. Catat. B. 176, 249 (2015)CrossRefGoogle Scholar
- 12.R. Gracia, M. Marradi, G. Salerno, R. Pérez-Nicado, A. Pérez-San Vicente, D. Dupin, J. Rodriguez, I. Loinaz, F. Chiodo, C. Nativi, ACS Macro. Lett. 7, 196 (2018)CrossRefGoogle Scholar
- 13.A. Herrera, L. Vela, G. Morales, Int. J. Chem. Tech. Res. 5, 602 (2016)Google Scholar
- 14.A. Pirkarami, M.E. Olya. J. Saudi. Chem. Sco. 21, 186 (2017)CrossRefGoogle Scholar
- 15.V.L. Grimauab, M. Vilasecaa, C.G. Bouzán, Desalin. Water Treart. 57, 6 (2016)Google Scholar
- 16.X. Hu, B. Liu, Y. Deng, H. Chen, S. Luo, C. Sun, P. Yang, S. Yang, Appl. Catal. 107, 274 (2011)CrossRefGoogle Scholar
- 17.L. Zhou, H. Zhang, L. Ji, Y. Shao, Y. Li, A. R. S. C. Adv. 4, 24900 (2014)CrossRefGoogle Scholar
- 18.M.H. Khan, H. Bae, J.Y. Jung, J. Hazard. Mater. 181, 659 (2010)CrossRefGoogle Scholar
- 19.T. Shahwan, S. Abu Sirriah, S. Nairat, E. Boyac, A.E. Eroglu, Chem. Eng. J. 172, 258 (2011)CrossRefGoogle Scholar
- 20.N. Pérez, C. Moya, P. Tartaj, A. Labarata, J. Appl. Phys. 4, 121 (2017)Google Scholar
- 21.H. Zhang, C. Wei, Y. Huang, J. Wang, Ultrason. Sonochem. 30, 61 (2016)CrossRefGoogle Scholar
- 22.L. Hou, L. Wang, S. Royer, H. Zhang, J. Hazard. Mater. 9, 33 (2015)Google Scholar
- 23.R.D.C. Soltani, S. Jorfi, H. Ramezani, S. Purfadakari, Ultrason. Sonochem. 28, 69 (2016)CrossRefGoogle Scholar
- 24.T. Han, L.L. Qu, Z.J. Luo, X.Y. Wu, D.X. Zhang, New. J. Chem. 38, 942 (2014)CrossRefGoogle Scholar
- 25.D. Rajalxmi, N. Jang, G. Leslie, A.J. Ragauskas, Carbohyd. Res. 345, 284 (2010)CrossRefGoogle Scholar
- 26.H. Li, B. Wu, C. Mu, W. Lin, Carbohydr. Polym. 84, 881 (2011)CrossRefGoogle Scholar
- 27.L. Segal, J.J. Creel, A.E. Martin, C.M. Conrad, Text. Res. J. 29, 786 (1959)CrossRefGoogle Scholar
- 28.M. Maccarini, A. Atreia, C. Innocenti, R. Barbucci, Colloids. Surf. A. 462, 107 (2014)CrossRefGoogle Scholar
- 29.M. Arlette, G. Jorge, R.V. Medrano, Int. J. Electrochem. Sci. 7, 6142 (2012)Google Scholar
- 30.J. Lindh, D.O. Carlsson, M. Strømme, A. Mihranyan, Biomacromol 15, 1928 (2014)CrossRefGoogle Scholar
- 31.S.M.A.S. Keshk, A.M. Ramadan, S. Bondock, Carbohydr. Polym. 127, 246 (2015)CrossRefGoogle Scholar
- 32.X. Jua, M. Bowdenb, E.E. Browna, X. Zhang, Carbohydr. Polym. 123, 476 (2015)CrossRefGoogle Scholar
- 33.K. Yoo, B.G. Jeon, S.H. Chun, Nano Lett. 16, 7408 (2016)CrossRefGoogle Scholar
- 34.J.S. Lee, C.J. Myung, H.Y. Yoon, J.K. Lee, Y.K. Kim, Sci. Rep. 5, 12135 (2015)CrossRefGoogle Scholar
- 35.S. Upadhyay, K. Parekh, B. Pandey, J. Alloys Compd. 678, 478 (2016)CrossRefGoogle Scholar
- 36.E.T.M. Nubia, M.A. Garza-Navarro, R. Lucio-Porto, G.G. Domingo, A.T. Alejandro, A. Virgilio, G. González, Mater. Chem. Phys. 141, 735 (2013)CrossRefGoogle Scholar
- 37.M.I.G. Miranda, C.I.D. Bica, S.M.B. Nachtigall, N. Rehman, S.M.L. Rosa, Kinetical. Thermochim. Acta 565, 65 (2013)CrossRefGoogle Scholar
- 38.S. El-Sayed, K.H. Mahmoud, A.A. Fatah, A. Hassen, Phys. B. 406, 4068 (2011)CrossRefGoogle Scholar
- 39.B. Show, N. Mukherjee, A. Mondal. R. S. C. ADV. 2, 1 (2016)Google Scholar
- 40.E. Ortiz, V.G. Chavéz, C.M. Cortés-Romero, H. Solis, J. Environ. Prot. Sci. 7, 1693 (2016)CrossRefGoogle Scholar
- 41.T.C. Blanco, G.A. Sierra, H.R. Zea, Rev. Colomb. Quim. 45, 30 (2016)CrossRefGoogle Scholar
- 42.Z.D. Meng, W.C. Oh, Ultrason. Sonochem. 18, 757 (2011)CrossRefGoogle Scholar
- 43.O.M. Martinez, J.H. Ramirez, M.L. Toled, Ing. Invest. 2, 30 (2013)Google Scholar
- 44.K.M. Reza, A. Kury, F. Culshan, Int. J. Environ. Sci. Technol. 7, 793 (2016)Google Scholar
- 45.H. Hassan, B.H. Hameed, Int. J. Environ. Sci. Technol. 6, 520 (2011)Google Scholar
- 46.M.A. Voinov, J.O. Sosa Pagán, E. Morrison, T.I. Smirnova, A.I. Smirnov, J. Am. Chem. Soc. 133, 35 (2011)CrossRefGoogle Scholar
- 47.A. Rahmani, Ultrason. Sonochem. 34, 389 (2017) , CrossRefGoogle Scholar
- 48.X. Ma, Y. Cheng, Y. Ge, H. Wu, Q. Li, N. Gao, J. Deng, Ultrason. Sonochem 40, 763 (2018)CrossRefGoogle Scholar
- 49.M.Q. Cai, J. Su, G.H. Lian, X.Q. Wei, C.Y. Dong, H.J. Zhang, M.C. Jin, Z.S. Wei, Ultrason. Sonochem 31, 193 (2016)CrossRefGoogle Scholar