Journal of the Iranian Chemical Society

, Volume 16, Issue 3, pp 523–533 | Cite as

Poly(vinyl alcohol)/methoxy poly(ethylene glycol) methacrylate-TiO2 nanocomposite as a novel polymeric membrane for enhanced gas separation

  • Sedigheh Borandeh
  • Amir AbdolmalekiEmail author
  • Sajjad Zamani nekuabadi
  • Morteza Sadeghi
Original Paper


In this study, TiO2 nanoparticles were functionalized by grafting polymerization of methoxy poly(ethylene glycol) methacrylate (MPEG) onto the nanoparticle surface. Functionalized TiO2 nanoparticle was used as nanofiller to prepare poly(vinyl alcohol) (PVA) based nanocomposite (NC) membranes through solution mixing method. The thermal and mechanical properties of PVA/PMPEG-TiO2 membranes were improved compared to pristine PVA membrane due to well dispersion and high compatibility between the inorganic fillers and the polymer matrix. Gas permeation and selectivity properties of PVA/PMPEG-TiO2 NC membranes with various TiO2 contents were also studied for O2, N2, CH4 and CO2. Gas permeability improvement was seen for studied gases, especially for CO2. In addition, the results showed higher CO2/N2 selectivity up to 49.36% for 3 wt% TiO2 containing NC membranes.


Nanocomposite Poly(vinyl alcohol) TiO2 nanoparticle Functionalization Gas separation Gas permeation 



We gratefully acknowledge the partial financial support from the Research Affairs Division Isfahan University of Technology (IUT), Isfahan. Further partial financial support of Iran Nanotechnology Initiative Council (INIC), National Elite Foundation (NEF) and Center of Excellency in Sensors, Green Chemistry (IUT) and Center for Nanotechnology in Drug Delivery at Shiraz University of Medical Sciences is also gratefully acknowledged.


  1. 1.
    M. Salame, Polym. Eng. Sci. 26, 1543–1546 (1986)CrossRefGoogle Scholar
  2. 2.
    D.F. Sanders., Z.P. Smith., R. Guo. L.M. Robeson. J.E. McGrath, D.R. Paul, B.D. Freeman, Polymer 54, 4729–4761 (2013)CrossRefGoogle Scholar
  3. 3.
    L.M. Robeson, J. Membr. Sci. 62, 165–185 (1991)CrossRefGoogle Scholar
  4. 4.
    F. Peng. L. Lu, H. Sun, Y. Wang. H. Wu, Z. Jiang, J. Membr. Sci. 275, 97–104 (2006)CrossRefGoogle Scholar
  5. 5.
    F. Peng, L. Lu., H. Sun., Y. Wang. J. Liu, Z. Jiang. Chem. Mater. 17, 6790–6796 (2005)CrossRefGoogle Scholar
  6. 6.
    H. Cong, M. Radosz, B.F. Towler, Y. Shen, Sep. Purif. Technol. 55, 281–291 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Ebrahimi, S. Mollaiy-Berneti, H. Asadi. M. Peydayesh, F. Akhlaghian, T. Mohammadi, Chem. Eng. Res. Des. 109, 647–656 (2016)CrossRefGoogle Scholar
  8. 8.
    N. Azizi, T. Mohammadi, R.M. Behbahani, J. Nat. Gas Sci. Eng. 37, 39–51 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Rezakazemi, A. Vatani, T. Mohammadi, J. Nat. Gas Sci. Eng. 30, 10–18 (2016)CrossRefGoogle Scholar
  10. 10.
    A. Ilyas, N. Muhammad, M.A. Gilani, I.F.J. Vankelecom, A.L. Khan, Sep. Purif. Technol 205, 176–183 (2018)CrossRefGoogle Scholar
  11. 11.
    F. Xiang, P. Tzeng, J.S. Sawyer, O. Regev, J. C. Grunlan, ACS Appl. Mater. Interfaces. 6, 6040–6048 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Cui. S. Kumar. B. Rao Kona, D. van Houcke, RSC Adv. 5, 63669–63690 (2015)CrossRefGoogle Scholar
  13. 13.
    C.-L. Lai., J.-T. Chen., Y.-J. Fu., W.-R. Liu. Y.-R. Zhong, S.-H. Huang, W.-S. Hung, S.J. Lue, C.-C. Hu, K.-R. Lee. Carbon 82, 513–522 (2015)CrossRefGoogle Scholar
  14. 14.
    S.A. Habibiannejad. A. Aroujalian, A. Raisi, RSC Adv. 6, 79563–79577 (2016)CrossRefGoogle Scholar
  15. 15.
    M.G. Buonomenna. W. Yave, G. Golemme. RSC Adv. 2, 10745–10773 (2012)CrossRefGoogle Scholar
  16. 16.
    N. Azizi. T. Mohammadi, R. Mosayebi Behbahani, Chem. Eng. Res. Des. 117, 177–189 (2017)CrossRefGoogle Scholar
  17. 17.
    C. Liu. K. Lv. B. Huang. C. Hou, G. Wang, RSC Adv. 3, 17945–17953 (2013)CrossRefGoogle Scholar
  18. 18.
    P. Pandey, R.S. Chauhan, Prog. Polym. Sci. 26, 853–893 (2001)CrossRefGoogle Scholar
  19. 19.
    M.I. Baker. S.P. Walsh. Z. Schwartz, B.D. Boyan. J. Biomed. Mater. Res. Part B Appl. Biomater. 100B, 1451–1457 (2012)CrossRefGoogle Scholar
  20. 20.
    L.E. Millon, W.K. Wan, J. Biomed. Mater. Res. Part B Appl. Biomater. 79B, 245–253 (2006)CrossRefGoogle Scholar
  21. 21.
    P. Zarzycki, J. Colloid Interface Sci. 306, 328–336 (2007)CrossRefGoogle Scholar
  22. 22.
    C. Borriello. A. De Maria. N. Jovic. A. Montone. M. Schwarz, M.V. Antisari, Mater. Manuf. Process. 24, 1053–1057 (2009)CrossRefGoogle Scholar
  23. 23.
    K. Leja, G. Lewandowicz, Pol. J. Environ. Stud. 19, 255–266 (2010)Google Scholar
  24. 24.
    R. Coles. D. McDowell, M.J. Kirwan, Food Packaging Technology, Blackwell Publishing, London, 2003Google Scholar
  25. 25.
    B.-S. Ge., T. Wang. H.-X. Sun. W. Gao, H.-R. Zhao, Polym. Adv. Technol. 29, 1334–1343 (2018)CrossRefGoogle Scholar
  26. 26.
    J. Ma. J. Pan., J. Yue. Y. Xu, J. Bao, Appl. Surf. Sci. 427, 428–436 (2018)CrossRefGoogle Scholar
  27. 27.
    C. Joly. M. Smaihi. L. Porcar, R.D. Noble, Chem. Mater. 11, 2331–2338 (1999)CrossRefGoogle Scholar
  28. 28.
    M. Moaddeb, W.J. Koros, J. Membr. Sci. 125, 143–163 (1997)CrossRefGoogle Scholar
  29. 29.
    Y. Kong. H. Du., J. Yang., D. Shi. Y. Wang. Y. Zhang, W. Xin, Desalination 146, 49–55 (2002)CrossRefGoogle Scholar
  30. 30.
    Q. Hu. E. Marand. S. Dhingra., D. Fritsch. J. Wen, G. Wilkes, J. Membr. Sci. 135, 65–79 (1997)CrossRefGoogle Scholar
  31. 31.
    S. Zinadini. A.A. Zinatizadeh. M. Rahimi. V. Vatanpour, H. Zangeneh. J. Membr. Sci. 453, 292–301 (2014)CrossRefGoogle Scholar
  32. 32.
    N.P. Patel., J.M. Zielinski., J. Samseth, R.J. Spontak, Macromol. Chem. Phys. 205, 2409–2419 (2004)CrossRefGoogle Scholar
  33. 33.
    H. Zhu, J. Yuan, J. Zhao, G. Liu, W. Jin, Sep. Purif. Technol. (2018). Google Scholar
  34. 34.
    L.-J. Zhu, L.-P. Zhu, J.-H. Jiang, Z. Yi, Y.-F. Zhao, B.-K. Zhu, Y.-Y. Xu, J. Membr. Sci. 451, 157–168 (2014)CrossRefGoogle Scholar
  35. 35.
    M.S. Mauter., Y. Wang.. P. Giannelis, K.C. Okemgbo, C.O. Osuji, E.M. Elimelech, ACS Appl. Mater. Interfaces 3, 2861–2868 (2011)CrossRefGoogle Scholar
  36. 36.
    J.D. Schiffman., Y. Wang. E.P. Giannelis, M. Elimelech, Langmuir 27, 13159–13164 (2011)CrossRefGoogle Scholar
  37. 37.
    J.G. Wijmans, R.W. Baker, J. Membr. Sci. 107, 1–21 (1995)CrossRefGoogle Scholar
  38. 38.
    S. Mallakpour, M. Madani, Prog. Org. Coat. 86, 194–207 (2015)CrossRefGoogle Scholar
  39. 39.
    B. Sarkar. V. Venugopal, A.M. Bodratti, M. Tsianou, P. Alexandridis, J. Colloid Interface Sci. 397, 1–8 (2013)CrossRefGoogle Scholar
  40. 40.
    A. Abdolmaleki, S. Mallakpour, S. Borandeh, Carbohydr. Polym. 103, 32–37 (2014)CrossRefGoogle Scholar
  41. 41.
    S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala, Polymer Composites, Nanocomposites, Wiley, Hoboken (2013)CrossRefGoogle Scholar
  42. 42.
    R. Nielsen, P. Kingshott, T. Uyar, J. Hacaloglu, K.L. Larsen, Surf. Interface Anal. 43, 884–892 (2011)CrossRefGoogle Scholar
  43. 43.
    O. Harizanov. A. Harizanova, T. Ivanova, Solid State Ionics 128, 261–265 (2000)CrossRefGoogle Scholar
  44. 44.
    T. Ivanova, A. Harizanova, Solid State Ionics 138, 227–232 (2001)CrossRefGoogle Scholar
  45. 45.
    Z. Peng, L.X. Kong, Polym. Degrad. Stab. 92, 1061–1071 (2007)CrossRefGoogle Scholar
  46. 46.
    C.A. Jones. S.A. Gordeyev, S.J. Shilton, Polymer 52, 901–903 (2011)CrossRefGoogle Scholar
  47. 47.
    E. Kucukpinar, P. Doruker, Polymer 44, 3607–3620 (2003)CrossRefGoogle Scholar
  48. 48.
    N. Hu, J.R. Fried. Polymer 46, 4330–4343 (2005)CrossRefGoogle Scholar
  49. 49.
    E. Farno. A. Ghadimi. N. Kasiri, T. Mohammadi, Sep. Purif. Technol. 81, 400–410 (2011)CrossRefGoogle Scholar
  50. 50.
    Y. Yampolskii. I. Pinnau, B. Freeman, Materials Science of Membranes for Gas and Vapor Separation. Wiley, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, (2006)Google Scholar
  51. 51.
    M.M. Talakesh., M. Sadeghi., M.P. Chenar, A. Khosravi, J. Membr. Sci. 415–416, 469–477 (2012)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Center for Nanotechnology in Drug DeliveryShiraz University of Medical SciencesShirazIslamic Republic of Iran
  2. 2.Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  3. 3.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  4. 4.Department of Chemistry, College of SciencesShiraz UniversityShirazIslamic Republic of Iran
  5. 5.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations