Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 3, pp 511–521 | Cite as

Nickel(II) immobilized on dithizone–boehmite nanoparticles: as a highly efficient and recyclable nanocatalyst for the synthesis of polyhydroquinolines and sulfoxidation reaction

  • Arash Ghorbani-ChoghamaraniEmail author
  • Parisa Moradi
  • Bahman Tahmasbi
Original Paper
  • 8 Downloads

Abstract

In this work, in the first stage, boehmite nanoparticles were easily fabricated via addition of NaOH solution to a solution of Al(NO3)3.9H2O at room temperature in water. Then, nickel–dithizone catalyst was supported on boehmite nanoparticles (Ni-dithizone@boehmite). Ni-dithizone@boehmite is a low-cost, nontoxic, and recoverable catalyst, which provides an environment friendly reaction conditions. In the second stage, catalytic activity of this catalyst was studied in the synthesis of polyhydroquinoline derivatives and selective oxidation of sulfides to sulfoxides. The reactions not require very high temperatures or inert atmosphere. The developed heterogeneous catalyst could be easily separated by centrifugation and recycled for several runs without leaching of Nickel from the surface of the catalyst or significant loss of its catalytic activity.

Keywords

Boehmite nanoparticles Nickel Polyhydroquinolines Sulfoxides Heterogeneous catalyst 

Notes

Acknowledgements

Authors thank Ilam University and Iran National Science Foundation (INSF) for financial support of this research project.

References

  1. 1.
    D. Wang, D. Astruc, Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 114, 6949–6985 (2014).  https://doi.org/10.1021/cr500134h CrossRefGoogle Scholar
  2. 2.
    D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852–7872 (2005).  https://doi.org/10.1002/anie.200500766 CrossRefGoogle Scholar
  3. 3.
    B. Tahmasbi, A. Ghorbani-Choghamarani, Pd(0)-Arg-boehmite: as reusable and efficient nanocatalyst in Suzuki and Heck reactions. Catal Lett 147, 649–662 (2017).  https://doi.org/10.1007/s10562-016-1927-y CrossRefGoogle Scholar
  4. 4.
    G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew. Chem. Int. Ed. 50, 826–859 (2011).  https://doi.org/10.1002/anie.201000235 CrossRefGoogle Scholar
  5. 5.
    H. Hassani, B. Zakerinasab, A. Nozarie, Sulfonic acid supported on Fe2O3/VO2 nanocatalyst: a highly efficient and reusable nanocatalyst for synthesis of spirooxindole derivatives. Asian J. Green Chem. 3, 59–69 (2018).  https://doi.org/10.22631/ajgc.2017.101572.1032 CrossRefGoogle Scholar
  6. 6.
    P. Moradi, A. Ghorbani-Choghamarani, Efficient synthesis of 5-substituted tetrazoles catalysed by palladium–S-methylisothiourea complex supported on boehmite nanoparticles. Appl Organometal Chem 31, e3602 (2017).  https://doi.org/10.1002/aoc.3602 CrossRefGoogle Scholar
  7. 7.
    M. Bakherad, R. Doosti, M. Mirzaee, K. Jadidi, A.H. Amin, O. Amiri, Palladium-free and phosphine-free sonogashira coupling reaction of aryl halides with terminal alkynes catalyzed by boehmite nanoparticle-anchored Cu(I) diethylenetriamine complex. Res. Chem. Intermed. 43, 7347–7363 (2017).  https://doi.org/10.1007/s11164-017-3079-0 CrossRefGoogle Scholar
  8. 8.
    M. Ghalkhani, M. Salehi, Electrochemical sensor based on multi-walled carbon nanotubes–boehmite nanoparticle composite modified electrode. J. Mater. Sci. 52, 12390–12400 (2017).  https://doi.org/10.1007/s10853-017-1361-6 CrossRefGoogle Scholar
  9. 9.
    S.P. Dubey, A.D. Dwivedi, M. Sillanpaa, H. Lee, Y.N. Kwon, C. Lee, Adsorption of As(V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions. Chemosphere 169, 99–106 (2017).  https://doi.org/10.1016/j.chemosphere.2016.11.052 CrossRefGoogle Scholar
  10. 10.
    A. Ghorbani-Choghamarani, P. Moradi, B. Tahmasbi, Ni–S-methylisothiourea complexes supported on boehmite nanoparticles and their application in the synthesis of 5-substituted tetrazoles. RSC Adv. 6, 56638–56646 (2016).  https://doi.org/10.1039/c6ra08026j CrossRefGoogle Scholar
  11. 11.
    D. Xu, H. Jiang, M. Li, A novel method for synthesizing well-defined boehmite hollow microspheres. J. Colloid Interface Sci. 504, 660–668 (2017).  https://doi.org/10.1016/j.jcis.2017.05.021 CrossRefGoogle Scholar
  12. 12.
    A. Ghorbani-Choghamarani, B. Tahmasbi, P. Moradi, Synthesis of a new Pd(0)-complex supported on boehmite nanoparticles and study of its catalytic activity for Suzuki and Heck reactions in H2O or PEG. RSC Adv 6, 43205 (2016).  https://doi.org/10.1039/c6ra02967a CrossRefGoogle Scholar
  13. 13.
    T. Fujii, S. Kawasaki, M. Kanakubo, Differences in crystal growth behaviors of boehmite particles with octanoic acid and sodium octanoate under supercritical hydrothermal conditions. J. Supercrit. Fluids 119, 81–87 (2017).  https://doi.org/10.1016/j.supflu.2016.09.011 CrossRefGoogle Scholar
  14. 14.
    Y. Ohta, T. Hayakawa, T. Inomata, T. Ozawa, H. Masuda, Novel nano boehmite prepared by solvothermal reaction of aluminum hydroxide gel in monoethanolamine. J. Nanopart. Res. 19, 232 (2017).  https://doi.org/10.1007/s11051-017-3918-3 CrossRefGoogle Scholar
  15. 15.
    S.M. Kim, Y.J. Lee, K.W. Jun, J.Y. Park, H.S. Potdar, Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite. Mater Chem Phys 104, 56–61 (2007).  https://doi.org/10.1016/j.matchemphys.2007.02.044 CrossRefGoogle Scholar
  16. 16.
    X.Y. Chen, H.S. Huh, S.W. Lee, Hydrothermal synthesis of boehmite (Γ-Alooh) nanoplatelets and nanowires: ph-controlled morphologies. Nanotechnology 18, 285608 (2007).  https://doi.org/10.1088/0957-4484/18/28/285608 CrossRefGoogle Scholar
  17. 17.
    M. Thiruchitrambalam, V.R. Palkar, V. Gopinathan, Hydrolysis of aluminium metal and sol–gel processing of nano alumina. Mater Lett 58, 3063–3066 (2014).  https://doi.org/10.1016/j.matlet.2004.05.043 CrossRefGoogle Scholar
  18. 18.
    A. Ghorbani–Choghamarani, M. Hajjami, B. Tahmasbi, N. Noori, Boehmite silica sulfuric acid: as a new acidic material and reusable heterogeneous nanocatalyst for the various organic oxidation reactions. J. Iran. Chem. Soc. 13, 2193–2202 (2016).  https://doi.org/10.1007/s13738-016-0937-4 CrossRefGoogle Scholar
  19. 19.
    M. Hajjami, A. Ghorbani-Choghamarani, R. Ghafouri-Nejad, B. Tahmasbi, Efficient preparation of boehmite silica dopamine sulfamic acid as a novel nanostructured compound and its application as a catalyst in some organic reactions. New J Chem. 40, 3066–3074 (2016).  https://doi.org/10.1039/C5NJ03546E CrossRefGoogle Scholar
  20. 20.
    A. Mohammadinezhad, B. Akhlaghinia, Fe3O4@boehmite-NH2-CoII NPs: an inexpensive and highly efficient heterogeneous magnetic nanocatalyst for the Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions. Green Chem. 19, 5625–5641 (2017).  https://doi.org/10.1039/C7GC02647A CrossRefGoogle Scholar
  21. 21.
    M. Mirzaee, B. Bahramian, J. Gholizadeh, A. Feizi, R. Gholami, Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes. Chem. Eng. J. 308, 160–168 (2017).  https://doi.org/10.1016/j.cej.2016.09.055 CrossRefGoogle Scholar
  22. 22.
    M. Bakherad, R. Doosti, M. Mirzaee, K. Jadidi, Synthesis of pyrazolopyranopyrimidines catalyzed by caffeine supported on boehmite nanoparticles and their evaluation for anti-bacterial activities. Iran J Catal 7, 27–35 (2017)Google Scholar
  23. 23.
    K. Bahrami, M.M. Khodaei, M. Roostaei, The preparation and characterization of boehmite nanoparticles-TAPC: a tailored and reusable nanocatalyst for the synthesis of 12-Aryl-8,9,10,12-tetrahydrobenzo[A]xanthen-11-ones. New J Chem 38, 5515–5520 (2014).  https://doi.org/10.1039/C4NJ01128G CrossRefGoogle Scholar
  24. 24.
    N.G. Afzaletdinova, E.R. Ibatova, Y. Murinov, Extraction of iridium (IV) by dihexyl sulfoxide from hydrochloric acid solutions. Russ. J. Inorg. Chem. 51, 971–976 (2006).  https://doi.org/10.1134/S0036023606060209 CrossRefGoogle Scholar
  25. 25.
    R.V. Kupwade, S.S. Khot, U.P. Lad, U.V. Desai, P.P. Wadgaonkar, Catalyst-free oxidation of sulfides to sulfoxides and diethylamine catalyzed oxidation of sulfides to sulfones using oxone as an oxidant. Res. Chem. Intermed. 43, 6875–6888 (2017).  https://doi.org/10.1007/s11164-017-3026-0 CrossRefGoogle Scholar
  26. 26.
    L. Shiri, B. Tahmasbi, Tribromide ion immobilized on magnetic nanoparticles as an efficient catalyst for the rapid and chemoselective oxidation of sulfides to sulfoxides. Phosphorus Sulfur Silicon 192, 53–57 (2017).  https://doi.org/10.1080/10426507.2016.1224878 CrossRefGoogle Scholar
  27. 27.
    M. Hajjami, Z. Shirvandi, Z. Yousofvand, Zr (IV)-ninhydrin supported MCM-41 and MCM-48 as novel nanoreactor catalysts for the oxidation of sulfides to sulfoxides and thiols to disulfides. J Porous Mater 24, 1461–1472 (2017).  https://doi.org/10.1007/s10934-017-0386-1 CrossRefGoogle Scholar
  28. 28.
    M.M.D. Pramanik, N. Rastogi, Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO. Chem. Commun. 52, 8557–8560 (2016).  https://doi.org/10.1039/C6CC04142F CrossRefGoogle Scholar
  29. 29.
    K.G.M. Koua, V.M. Dong, Tandem rhodium catalysis: exploiting sulfoxides for asymmetric transition-metal catalysis. Org. Biomol. Chem. 13, 5844–5847 (2015).  https://doi.org/10.1039/C5OB00083A CrossRefGoogle Scholar
  30. 30.
    G. Chehardoli, M.A. Zolfigol, Melamine-(H2SO4)3/melamine-(HNO3)3 Instead of H2SO4/HNO3: a safe system for the fast oxidation of thiols and sulfides under solvent-free. J. Sulfur Chem. 36, 606–612 (2015).  https://doi.org/10.1080/17415993.2015.1074688 CrossRefGoogle Scholar
  31. 31.
    Y. Liu, H. Wang, C. Wang, J.P. Wan, C. Wen, Bio-based green solvent mediated disulfide synthesis via thiol couplings free of catalyst and additive. RSC Adv 3, 21369–21372 (2013).  https://doi.org/10.1039/C3RA42915F CrossRefGoogle Scholar
  32. 32.
    M.A. Zolfigol, A. Khazaei, M. Safaiee, M. Mokhlesi, R. Rostamian, M. Bagheri, M. Shiri, H.G. Kruger, Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for oxidation of sulfides at room temperature. J Mol Catal A Chem 370, 80–86 (2013).  https://doi.org/10.1016/j.molcata.2012.12.015 CrossRefGoogle Scholar
  33. 33.
    A. Shaabani, A.H. Rezayan, Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catal. Commun. 8, 1112–1116 (2007).  https://doi.org/10.1016/j.catcom.2006.10.033 CrossRefGoogle Scholar
  34. 34.
    D. Habibi, M.A. Zolfigol, M. Safaiee, A. Shamsian, A. Ghorbani-Choghamarani, Catalytic oxidation of sulfides to sulfoxides using sodium perborate and/or sodium percarbonate and silica sulfuric acid in the presence of KBr. Catal. Commun. 10, 1257–1260 (2009).  https://doi.org/10.1016/j.catcom.2008.12.066 CrossRefGoogle Scholar
  35. 35.
    A. Ghorbani-Choghamarani, H. Rabiei, B. Tahmasbi, B. Ghasemi, F. Mardi, Preparation of DSA@MNPs and application as heterogeneous and recyclable nanocatalyst for oxidation of sulfides and oxidative coupling of thiols. Res. Chem. Intermed. 42, 5723–5737 (2016).  https://doi.org/10.1007/s11164-015-2399-1 CrossRefGoogle Scholar
  36. 36.
    S.M. Vahdat, F. Chekin, M. Hatami, M. Khavarpour, S. Baghery, Z. Roshan-Kouhi, Synthesis of polyhydroquinoline derivatives via a four-component Hantzsch condensation catalyzed by tin dioxide nanoparticles. Chin. J. Catal. 34, 758–763 (2013).  https://doi.org/10.1016/S1872-2067(11)60518-4 CrossRefGoogle Scholar
  37. 37.
    M. Nasr-Esfahani, S.J. Hoseini, M. Montazerozohori, R. Mehrabi, H. Nasrabadi, Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Mol. Catal. A: Chem. 382, 99–105 (2014).  https://doi.org/10.1016/j.molcata.2013.11.010 CrossRefGoogle Scholar
  38. 38.
    A. Ghorbani-Choghamarani, M.A. Zolfigol, M. Hajjami, H. Goudarziafshar, M. Nikoorazm, S. Yousefi, B. Tahmasbi, Nano aluminium nitride as a solid source of ammonia for the preparation of Hantzsch 1,4-dihydropyridines and bis-(1,4-dihydropyridines) in water via one pot multicomponent reaction. J Braz Chem Soc 22, 525–531 (2011).  https://doi.org/10.1590/S0103-50532011000300016 CrossRefGoogle Scholar
  39. 39.
    P.N. Kalaria, S.P. Satasia, D.K. Raval, Synthesis, characterization and pharmacological screening of some novel 5-imidazopyrazole incorporated polyhydroquinoline derivatives. Eur. J. Med. Chem. 78, 207–216 (2014).  https://doi.org/10.1016/j.ejmech.2014.02.015 CrossRefGoogle Scholar
  40. 40.
    B. Tahmasbi, A. Ghorbani-Choghamarani, First report of the direct supporting of palladium–arginine complex on boehmite nanoparticles and application in the synthesis of 5-substituted tetrazoles. Appl Organometal Chem 31, e3644 (2017).  https://doi.org/10.1002/aoc.3644 CrossRefGoogle Scholar
  41. 41.
    A. Ghorbani-Choghamarani, B. Tahmasbi, N. Noori, R. Ghafouri-nejad, A new palladium complex supported on magnetic nanoparticles and applied as an catalyst in amination of aryl halides, Heck and Suzuki reactions. J. Iran. Chem. Soc. 14, 681–693 (2017).  https://doi.org/10.1007/s13738-016-1020-x CrossRefGoogle Scholar
  42. 42.
    A. Ghorbani-Choghamarani, B. Tahmasbi, Z. Moradi, S-Benzylisothiourea complex of palladium on magnetic nanoparticles: a highly efficient and reusable nanocatalyst for synthesis of polyhydroquinolines and Suzuki reaction. Appl Organometal Chem. 31, e3665 (2017).  https://doi.org/10.1002/aoc.3665 CrossRefGoogle Scholar
  43. 43.
    M.A. Bodaghifard, M. Solimannejad, S. Asadbegi, S. Dolatabadifarahani, Mild and green synthesis of tetrahydrobenzopyran, pyranopyrimidinone and polyhydroquinoline derivatives and DFT study on product structures. Res. Chem. Intermed. 42, 1165–1179 (2016).  https://doi.org/10.1007/s11164-015-2079-1 CrossRefGoogle Scholar
  44. 44.
    G.B. Dharma Rao, S. Nagakalyan, G.K. Prasad, Solvent-free synthesis of polyhydroquinoline derivatives employing mesoporous vanadium ion doped titania nanoparticles as a robust heterogeneous catalyst via the Hantzsch reaction. RSC Adv 7, 3611–3616 (2017).  https://doi.org/10.1039/C6RA26664A CrossRefGoogle Scholar
  45. 45.
    O. Goli-Jolodar, F. Shirini, M. Seddighi, Introduction of a novel nanosized N-sulfonated brönsted acidic catalyst for the promotion of the synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. RSC Adv. 6, 26026–26037 (2016).  https://doi.org/10.1039/C6RA04148E CrossRefGoogle Scholar
  46. 46.
    G. Mohammadi Ziarani, A.R. Badiei, Y. Khaniania, M. Haddadpour, One pot synthesis of polyhydroquinolines catalyzed by sulfonic acid functionalized SBA-15 as a new nanoporous acid catalyst under solvent-free conditions. Iran J Chem Chem. Eng. 29, 1–10 (2010)Google Scholar
  47. 47.
    A. Ghorbani-Choghamarani, P. Moradi, B. Tahmasbi, Ni-SMTU@boehmite: as an efficient and recyclable nanocatalyst for oxidation reactions. RSC Adv. 6, 56458–56466 (2016).  https://doi.org/10.1039/c6ra09950e CrossRefGoogle Scholar
  48. 48.
    P. Gogoi, M. Kalita, T. Bhattacharjee, P. Barman, Copper–Schiff base complex catalyzed oxidation of sulfides with hydrogen peroxide. Tetrahedron Lett. 55, 1028–1030 (2014).  https://doi.org/10.1016/j.tetlet.2013.12.073 CrossRefGoogle Scholar
  49. 49.
    S.M. Islam, A.S. Roy, P. Mondal, K. Tuhina, M. Mobarak, J. Mondal, Selective oxidation of sulfides and oxidative bromination of organic substrates catalyzed by polymer anchored Cu(II) complex. Tetrahedron Lett. 53, 127–131 (2012).  https://doi.org/10.1016/j.tetlet.2011.10.138 CrossRefGoogle Scholar
  50. 50.
    A. Ghorbani-Choghamarani, B. Tahmasbi, P. Moradi, N. Havasi, Cu–S-(propyl)-2-aminobenzothioate on magnetic nanoparticles: highly efficient and reusable catalyst for synthesis of polyhydroquinoline derivatives and oxidation of sulfides. Appl Organometal Chem. 30, 619–625 (2016).  https://doi.org/10.1002/aoc.3478 CrossRefGoogle Scholar
  51. 51.
    M. Nikoorazm, A. Ghorbani-Choghamarani, H. Mahdavi, S.M. Esmaeili, Efficient oxidative coupling of thiols and oxidation of sulfides using UHP in the presence of Ni or Cd salen complexes immobilized on MCM-41 mesoporous as novel and recoverable nanocatalysts. Microporous Mesoporous Mater. 211, 174–181 (2015).  https://doi.org/10.1016/j.micromeso.2015.03.011 CrossRefGoogle Scholar
  52. 52.
    B. Yu, C.X. Guo, C.L. Zhong, Z.F. Diao, L.N. He, Metal-free chemoselective oxidation of sulfides by in situ generated Koser’s reagent in aqueous media. Tetrahedron Lett. 55, 1818–1821 (2015).  https://doi.org/10.1016/j.tetlet.2014.01.116 CrossRefGoogle Scholar
  53. 53.
    S. Hussain, D. Talukdar, S.K. Bharadwaj, M.K. Chaudhuri, VO2F(dmpz)2: a new catalyst for selective oxidation of organic sulfides to sulfoxides with H2O2. Tetrahedron Lett. 53, 6512–6515 (2012).  https://doi.org/10.1016/j.tetlet.2012.09.067 CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceIlam UniversityIlamIran

Personalised recommendations