Journal of the Iranian Chemical Society

, Volume 16, Issue 2, pp 385–392 | Cite as

Fabrication of ZIF-8 based on lignin with high yield for dye removal from water

  • Wenjing XuEmail author
  • Yizhen Chen
  • Jianxun Kang
  • Baojun Li
Original Paper


The hybrid nanocomposites ZIF@L composed of Zn-based MOFs (ZIF-8) and lignin were successfully synthesized via a simple one-step method at room temperature. The yield of the hybrid nanocomposites ZIF@L were up to 52% and the synthesis time was greatly shortened. Characterization using FT-IR, XRD, SEM and N2-sorption analysis indicated that ZIF@L composites exhibited rhombic dodecahedral structure such as the parent ZIF-8 synthesized in the absence of lignin and the incorporation of lignin did not destroy the framework integrity of ZIF-8. The ZIF@L composites were used to remove methyl violet (MV). The ZIF@L nanocomposites had a remarkable improvement in adsorption capacity of MV compared with the parent ZIF-8. The modified Langmuir model fitted better the equilibrium data of MV adsorption on the ZIF@L-4 composite and the maximum adsorption capacity of MV is 1001.2 mg g−1. The pseudo-second-order model could describe well the kinetics process of MV dye onto the prepared adsorbents.


Metal–organic frameworks ZIF-8 Lignin Adsorption Dye 



This work was supported by Foundation of Henan Scientific and Technological Committee (no. 182102210420).


  1. 1.
    R. Salunkhe, Y. Kamachi, N. Torad, S. Hwang, Z. Sun, S. Dou, J. Kim, Y. Yamauchi, J. Mater. Chem. A 2, 19848 (2014)CrossRefGoogle Scholar
  2. 2.
    E.L. Bustamante, J.L. Fernández, J.M. Zamaro, J. Colloid Interface Sci. 424, 37 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li, W. Zhu, D. Pan, H. Zhu, M. Liu, Nanoscale 7, 18770 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Cravillon, C.A. Schroder, H. Bux, A. Rothkirch, J. Caro, M. Wiebcke, CrystEngComm 14, 492 (2012)CrossRefGoogle Scholar
  5. 5.
    S.Z. Xu, Y.L. Lv, X.F. Zeng, D.P. Cao, Chem. Eng. J. 323, 502 (2017)CrossRefGoogle Scholar
  6. 6.
    S.S. Ding, Q. Yan, H. Jiang, Z.X. Zhong, R.Z. Chen, W.H. Xing, Chem. Eng. J. 296, 146 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’keeffe, O.M. Yaghi, Science 319, 939 (2008)CrossRefGoogle Scholar
  8. 8.
    Y. Yang, Q. Hu, Q. Zhang, K. Jiang, W. Lin, Y. Yang, Y. Cui, G. Qian, Mol. Pharm. 13, 2782 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, J. Xu, Y. Wang, H. Xue, H. Pang, Chem. Rec. 17, 1 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Springer, A. Satalov, J. Lippke, M. Wiebcke, Microporous Mesoporous Mater. 216, 161 (2015)CrossRefGoogle Scholar
  11. 11.
    K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Proc. Natl. Acad. Sci. USA 103, 10186 (2006)CrossRefGoogle Scholar
  12. 12.
    Y. Chen, C. Yang, X. Wang, J. Yang, K. Ouyang, J. Li, J. Mater. Chem. A 4, 10345 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Cravillon, S. Münzer, S.J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 21, 1410 (2009)CrossRefGoogle Scholar
  14. 14.
    Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Chem. Commun. 47, 2071 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Pan, D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H. Su, Z. Lai, CrystEngComm 13, 6937 (2011)CrossRefGoogle Scholar
  16. 16.
    T. Xing, Y. Lou, Q. Bao, J. Chen, CrystEngComm 16, 8994 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 23, 2130 (2011)CrossRefGoogle Scholar
  18. 18.
    J. Abdi, M. Vossoughi, N.M. Mahmoodi, I. Alemzadeh, Chem. Eng. J. 326, 1145 (2017)CrossRefGoogle Scholar
  19. 19.
    X.J. Zhao, X.L. Fang, B.H. Wu, L.S. Zheng, N.F. Zheng, Sci. China Chem. 57, 141 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Yue, Z.A. Qiao, X. Li, A.J. Binder, E. Formo, Z. Pan, C. Tian, Z. Bi, S. Dai, Cryst. Growth Des. 13, 1002 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Schejn, L. Balan, V. Falk, L. Aranda, G. Medjahdi, R. Schneider, CrystEngComm 16, 4493 (2014)CrossRefGoogle Scholar
  22. 22.
    Q. Bao, Y. Lou, T. Xing, J. Chen, Inorg. Chem. Commun. 37, 170 (2013)CrossRefGoogle Scholar
  23. 23.
    H.Y. Cho, J. Kim, S.N. Kim, W.S. Ahn, Microporous Mesoporous Mater. 169, 180 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Polyzoidis, T. Altenburg, M. Schwarzer, S. Loebbecke, S. Kaskel, Chem. Eng. J. 283, 971 (2016)CrossRefGoogle Scholar
  25. 25.
    M.J. Cliffe, C. Mottillo, R.S. Stein, D.K. Bucar, T. Friscic, Chem. Sci. 3, 2495 (2012)CrossRefGoogle Scholar
  26. 26.
    N. Gholampour, S. Chaemchuen, Z.Y. Hu, B. Mousavi, G.V. Tendeloo, F. Verpoort, Chem. Eng. J. 322, 702 (2017)CrossRefGoogle Scholar
  27. 27.
    H.S. Choi, S.J. Lee, Y.S. Bae, S.J. Choung, S.H. Im, J. Kim, Chem. Eng. J. 266, 56 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Thomas, B.N. Nair, G.M. Anilkumar, A.P. Mohamed, K.G.K. Warrier, U.S. Hareesh, J. Environ. Chem. Eng. 4, 1442 (2016)CrossRefGoogle Scholar
  29. 29.
    T. Zhang, X. Zhang, X. Yan, L. Kong, G. Zhang, H. Liu, J. Qiu, K.L. Yeung, Chem. Eng. J. 228, 398 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Tanaka, K. Kida, T. Nagaoka, T. Ota, Y. Miyake, Chem. Commun. 49, 7884 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Zhang, G.L. Li, K.G. Zhang, C.Y. Liao, Acta Chim. Sin. 75, 841 (2017)CrossRefGoogle Scholar
  32. 32.
    R.J.A. Gosselink, E. de Jong, B. Guran, A. Abacherli, Ind. Crop. Prod. 20, 121 (2004)CrossRefGoogle Scholar
  33. 33.
    H.R. Ghatak, P.P. Kundu, S. Kumar, Thermochim. Acta 502, 85 (2010)CrossRefGoogle Scholar
  34. 34.
    M.G. Alriols, A. Tejado, M. Blanco, I. Mondragon, J. Labidi, Chem. Eng. J. 148, 106 (2009)CrossRefGoogle Scholar
  35. 35.
    K.V. Sarkanen, C.H. Ludwig, Lignins: Occurrence, Formation, Structure and Reactions (Wiley-Interscience, New York, 1971), pp. 1–11Google Scholar
  36. 36.
    G. Bronow, Methods to Reveal the Structure of Lignin (Wiley-VCH, New York, 2001), pp. 93–112Google Scholar
  37. 37.
    S. Azizian, J. Colloid Interface Sci. 276, 47 (2004)CrossRefGoogle Scholar
  38. 38.
    S. Azizian, S. Eris, L.D. Wilson, Chem. Phys. 513, 99 (2018)CrossRefGoogle Scholar
  39. 39.
    K.J. Fang, Dye Application Manual, 2nd edn. (China Textile Publishing House, Beijing, 2013), pp. 203–204Google Scholar
  40. 40.
    W.J. Xu, W.S. Zhang, Y. Li, W. Li, Korean J. Chem. Eng. 33, 2659 (2016)CrossRefGoogle Scholar
  41. 41.
    R. Lafi, A. Fradj, A. Hafiane, B.H. Hameed, Korean J. Chem. Eng. 31, 2198 (2014)CrossRefGoogle Scholar
  42. 42.
    K. Porkodi, K. Vasanth, J. Hazard. Mater. 143, 311 (2007)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.School of ScienceJiaozuo Engineering Technology Research Center of Separation and Adsorption Materials, Jiaozuo Teachers CollegeJiaozuoPeople’s Republic of China
  2. 2.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations