Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 2, pp 373–384 | Cite as

Catalytic hydrogenation of aldehydes and ketones using cinchona–bipyridyl-based palladium catalyst

  • Ramasamy R. Chidambaram
  • Velu Sadhasivam
  • Mathappan Mariyappan
  • Ayyanar SivaEmail author
Original Paper
  • 37 Downloads

Abstract

Understanding the need for simple, robust and low effluents, in chemical processes, we have developed an elegant protocol for the catalytic reduction of aldehydes and ketones to corresponding alcohols which are used in synthetic fragrance applications using cinchona alkaloid-derived palladium catalyst. This system holds good for very low catalyst loading surfaces with the formation of fewer impurities and negligible decomposition under moderate pressure. The conversions and yields range from moderate to good (60–80%).

Keywords

Hydrogenation Cinchona alkaloid Palladium catalyst Cyclic and acyclic ketones 

Notes

Acknowledgements

The authors acknowledge the financial support of the Department of Science and Technology, SERB, Extramural Major Research Project (Grant no. EMR/2015/000969), Council of Scientific and Industrial Research (CSIR), HRDG, No. 01(2901)/17/EMR-II, New Delhi, Department of Science and Technology DST/TM/CERI/C130(G), New Delhi, India.

Supplementary material

13738_2018_1513_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1888 KB)

References

  1. 1.
    P. Paul, N. Rylander, Hydrogenation and Dehydrogenatio in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2005)Google Scholar
  2. 2.
    R.I. Masel, Principles of Adsorption and Reaction on Solid Surface (Wiley-Interscience, Newyork, 1996), 240Google Scholar
  3. 3.
    N.G. Gaylord, Reduction with Complex Metal Hydrides (Interscience Publishers, Inc., New York, 1956)Google Scholar
  4. 4.
    K. Ziegler, Angew. Chem. 64, 323 (1952)CrossRefGoogle Scholar
  5. 5.
    A.E. Finholt, A.E. Jacobson, A.E. Oqard, P. Thompson, J. Am. Chem. Soc. 77, 4163 (1955)CrossRefGoogle Scholar
  6. 6.
    Metal Hydrides Inc., Technical Bulletin 502-F, Sodium Borohydride, (1955)Google Scholar
  7. 7.
    H.C. Brown, C. Subba Rao, J. Am. Chem. Soc. 78, 2581 (1956)Google Scholar
  8. 8.
    J. Kollonitsch, O. Fuchs, V. Gabor, Nature 173, 125 (1954)CrossRefGoogle Scholar
  9. 9.
    J. Sabatier, S. Murat, Ann. Chim. 9, 258 (1915)Google Scholar
  10. 10.
    E.Carleton, Hydrogenation of Organic Substances, 3rd edn. (Van Nostrand Company, New York, 1930), p. 564Google Scholar
  11. 11.
    R. Connor, H. Adkins, J. Am. Chem. Soc. 54, 4678 (1932)CrossRefGoogle Scholar
  12. 12.
    W. Carruthers, Some Modern Methods of Organic Synthesis, vol. 413 (Cambridge University Press, Cambridge, 1986)Google Scholar
  13. 13.
    V. N. Ipatieff, Catalytic Reactions at High Temperature and Pressure. Macmillan, New York (1937)Google Scholar
  14. 14.
    R. Schrock Richard. A. Osborn, John, J. Am. Chem. Soc. 98, 2134 (1976)CrossRefGoogle Scholar
  15. 15.
    S. Robert, E. Ireland, P. Bey, Collect. Vol. 6, 459 (1988)Google Scholar
  16. 16.
    J.A. Osborn, G. Wilkinson, Inorg. Synth. 10, 67 (1967)Google Scholar
  17. 17.
    J.A. Osborn, F.H. Jardine, J.F. Young, G. Wilkinson, J. Chem. Soc. 1711 (1966).  https://doi.org/10.1039/J19660001711
  18. 18.
    W. Dong, A. Didier Chem. Rev, 115, 6621 (2015). (g) F. Foubelo, M.Yus. Chem Rec. 15, 907 (2015)Google Scholar
  19. 19.
    F. Foubelo, M.Yus. Chem Rec. 15, 907 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Yoshimura, S. Tanaka, M. Kitamura, Tetrahedron Lett. 55, 3635 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Matsumura, X. Zhang, K. Hori, T. Murayama, T. Ohmiya, H. Shimizu, T. Saito, N. Sayo, Org. Process Res. Dev. 15, 1130 (2011)CrossRefGoogle Scholar
  22. 22.
    P.A. Bradley, R.J. Carroll, Y.C. Lecouturier, R. Moore, P. Noeureuil, B. Patel, J. Snow, S. Wheeler, Org. Process Res. Dev. 14, 1326 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, P.G. Blazecka, M.M. Bruendl, Y.J. Huang, Org. Chem. 74, 1411 (2009)CrossRefGoogle Scholar
  24. 24.
    K.B. Hansen, J.R. Chilenski, R. Desmond, P.N. Devine, E.J.J. Grabowski, R. Heid, M. Kubryk, D.J. Mathre, R. Varsolona, Tetrahedron Asymmetry 14, 3581 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Miyagi, J. Takehara, S. Collet, K. Okano, Org. Process Res. Dev. 4, 346 (2000)CrossRefGoogle Scholar
  26. 26.
    K. Tanaka, M. Katsurada, F. Ohno, Y. Shiga, M. Oda, M. Miyagi, J. Takehara, K. J. Okano. Org. Chem. 65, 432 (2000)CrossRefGoogle Scholar
  27. 27.
    D.R. Sidler, J.W. Sager, J.J. Bergan, K.M. Wells, M. Bhupathy, R.P. Volante, Tetrahedron Asymmetry 8, 161 (1997)CrossRefGoogle Scholar
  28. 28.
    A.O. King, E.G. Corley, R.K. Anderson, R.D. Larsen, T.R. Verhoeven, P.J. Reider, Y.B. Xiang, M. Belley, Y. Leblanc, M. Labelle, P. Prasit, R.J. Zamboni, J. Org. Chem. 58, 3731 (1993)CrossRefGoogle Scholar
  29. 29.
    WO, 2002022526 A2, WO 2002040155 A1, WO 2006106484 A1, WO 2008065588 A1, US 5874600 A, US 6878852 B2, EP 1366004 B1, EP 2747886 A1, US 6214763 B., Firmenich SA, GenevaGoogle Scholar
  30. 30.
    P.K. Vijaya, S. Murugesan, A. Siva, Tetrahedron Lett. 56, 5209 (2015)CrossRefGoogle Scholar
  31. 31.
    V. Sadhasivam, R. Balasaravanan, C. Chithiraikumar, A. Siva, Chem. Select 2, 1063–1070 (2017)Google Scholar
  32. 32.
    V. Sadhasivam, V. Mathappan, M. Harikrishnan, C. Chithiraikumar, S. Murugesan, A. Siva, Res. Chem. Intermed. 44, 2853–2866 (2018)CrossRefGoogle Scholar
  33. 33.
    V. Sadhasivam, R. Balasaravanan, C. Chithiraikumar, A. Siva, ChemCatChem. 10, 1–13 (2018)CrossRefGoogle Scholar
  34. 34.
    G. Li, H. Abroshan, Y. Chen, R. Jin, H.J. Kim, J. Am. Chem. Soc. 137, 14295 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Yang, Z. Du, Y. Huang, F. Lu, F. Wang, J. Gao, J. Xu, Green Chem. 15, 1932 (2013)CrossRefGoogle Scholar
  36. 36.
    Y. Zhu, L. Tian, Z. Jiang, Y. Pei, S. Xie, M. Qiao, K. Fan, J. Catal. 281, 106 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Tamura, K. Tokonami, Y. Nakagawa, K. Tomishige, Chem. Commun. 49, 7034 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Werkmeister, K. Junge, B. Wendt, E. Alberico, H. Jiao, W. Baumann, H. Junge, F. Gallou, M. Beller, Angew. Chem. Int. Ed. 53, 8722 (2014)CrossRefGoogle Scholar
  39. 39.
    T. Mahdi, D.W. Stephan, Angew. Chem. Int. Ed. 54, 8511 (2015)CrossRefGoogle Scholar
  40. 40.
    M.M. Villaverde, T.F. Garetto, A.J. Marchi, Catal. Commun. 58, 6 (2015)CrossRefGoogle Scholar
  41. 41.
    T. Zell, Y.B. David, D. Milstein, Catal. Sci. Technol. 5, 822 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Fleischer, S. Zhou, K. Junge, M. Beller, Angew. Chem. Int. Ed. 125, 5224 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Ramasamy R. Chidambaram
    • 1
  • Velu Sadhasivam
    • 1
  • Mathappan Mariyappan
    • 1
  • Ayyanar Siva
    • 1
    Email author
  1. 1.Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry, School of ChemistryMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations