Journal of the Iranian Chemical Society

, Volume 16, Issue 2, pp 283–292 | Cite as

Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor

  • Majid MirzaeeEmail author
  • Changiz Dehghanian
Original Paper


Through electrodeposition at a high current density and controlling the produced hydrogen gas, nanostructured copper foams were fabricated on copper as high-performance electrodes for supercapacitors. The structure and morphology of copper foams were controlled by adjusting deposition parameters and addition of acid acetic as bubble stabilizer addition. Acid acetic reduced the hydrophobic force between individual bubbles, and thus allowed controlling the porosity of the thin foam. Electrochemical impedance spectroscopy (EIS) measurements, galvanostatic charge/discharge (GCD) and cyclic voltammetry were carried out to study the electrochemical behavior of copper foams. EIS results showed that thin copper foams deposited from 0.4 M CuSO4 and 0.1 M CH3COOH, at 3 A/cm2 for 20 s present the highest specific capacitance that was 102.68 F/g. GCD data for the same foam showed a capacitance of 95 F/g at 1 mA/cm2. Cycle life study exhibited 90% capacitance retention after 6000 cycles at high current density (20 mA/cm2).

Graphical abstract


Copper foam Supercapacitor Hydrogen template Porous film Electrodeposition Current collector 


  1. 1.
    B.C. Tappan, S.A. Steiner, E.P. Luther, Angew. Chem. Int. Ed. 49, 4544 (2010)CrossRefGoogle Scholar
  2. 2.
    M.B. K.Tan, Q. Tian, Cai, Thin Solid Films 518, 5159 (2010)CrossRefGoogle Scholar
  3. 3.
    H.R. Jung, E.J. Kim, Y.J. Park, H.C. Shin, J. Power Sources 196, 5122 (2011)CrossRefGoogle Scholar
  4. 4.
    X.Y. Fan, F.S. Ke, G.Z. Wei, L. Huang, S.G. Sun, J. Alloy Compd. 476, 70 (2009)CrossRefGoogle Scholar
  5. 5.
    L. Liu, J. Lyu, T. Zhao, T. Li, Chem. Eng. Commun. 203, 707 (2016)Google Scholar
  6. 6.
    D.S.P. Cardoso, S. Eugénio, T.M. Silva, D.M.F. Santos, C.A.C. Sequeira, M.F. Montemor, RSC Adv. 5, 43456 (2015)CrossRefGoogle Scholar
  7. 7.
    H.C. Shin, J. Dong, M. Liu, Adv. Mater. 15, 1610 (2003)CrossRefGoogle Scholar
  8. 8.
    J. Niu, X. Liu, K. Xia, L. Xu, Y. Xu, X. Fang, W. Lu, Int. J. Electr. Sci. 10, 7331 (2015)Google Scholar
  9. 9.
    N.D. Nikolić, G. Branković, V.M. Maksimović, J. Solid State Electron. 16, 321 (2012)CrossRefGoogle Scholar
  10. 10.
    D.M. Soares, S. Wasle, K.G. Weil, K. Doblhofer, J. Electroanal. Chem. 532, 353 (2002)CrossRefGoogle Scholar
  11. 11.
    D.H. Nam, R.H. Kim, D.W. Han, J.H. Kim, H.S. Kwon, Electrochim. Acta 56, 9397 (2011)CrossRefGoogle Scholar
  12. 12.
    H.C. Shin, M. Liu, Chem. Mater. 16, 5460 (2004)CrossRefGoogle Scholar
  13. 13.
    N.D. Nikolić, G. Branković, M.G. Pavlović, K.I. Popov, J. Electroanal. Chem. 621, 13 (2008)CrossRefGoogle Scholar
  14. 14.
    N.D. Nikolić, K.I. Popov, L.J. Pavlović, M.G. Pavlović, J. Solid. State. Electron. 11, 667 (2007)CrossRefGoogle Scholar
  15. 15.
    N.D. Nikolić, K.I. Popov, L.J. Pavlović, M.G. Pavlović, Surf. Coat. Technol. 201, 560 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Cherevko, X. Xing, C.H. Chung, Electrochem. Commun. 12, 467 (2010)CrossRefGoogle Scholar
  17. 17.
    Q. Li, K.X. Li, J.Y. Gu, J. Inorg. Mater. Beijing 22, 894 (2007)Google Scholar
  18. 18.
    Y. Li, Y.Y. Song, C. Yang, X.H. Xia, Electrochem. Commun. 9, 981 (2007)CrossRefGoogle Scholar
  19. 19.
    N.I.U. Zhen-Jiang, S. Y.F. CH, LI, Z.L.C. Shu-Qiong, Chin. J. Inorg. Chem. 22, 930 (2006)Google Scholar
  20. 20.
    J. Niu, X. Liu, K. Xia, L. Xu, Y. Xu, X. Fang, W. Lu, Int. J. Electrochem. Sci. 10, 7331 (2015)Google Scholar
  21. 21.
    H. Zhang, Y. Ye, R. Shen, C. Ru, Y. Hu, J. Electrochem. Soc. 160, D441 (2013)CrossRefGoogle Scholar
  22. 22.
    W.S. Choi, H.R. Jung, S.H. Kwon, J.W. Lee, M. Liu, H.C. Shin, J. Mater. Chem. 22, 1028 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.H. Zhao, T. Masuoka, T. Tsuruta, Int. J. Heat. Mass. Transf. 45, 3189 (2002)CrossRefGoogle Scholar
  24. 24.
    N.D. Nikolić, K.I. Popov, L.J. Pavlović, M.G. Pavlović, J. Electroanal. Chem. 588, 88 (2006)CrossRefGoogle Scholar
  25. 25.
    I. Sunagawa, Morphology of Crystals: Part A: Fundamentals Part B: Fine Particles, Minerals and Snow Part C: The Geometry of Crystal Growth by Jaap van Suchtelen, 1st edn. (Springer, New York, 1995), pp. 1–420Google Scholar
  26. 26.
    I. Epelboin, M. Joussellin, R. Wiart, J. Electroanal. Chem. Interfacial Electrochem. 119, 61 (1981)CrossRefGoogle Scholar
  27. 27.
    S. Biswas, L.T. Drzal, Chem. Mater. 22, 5667 (2010)CrossRefGoogle Scholar
  28. 28.
    J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237 (2013)CrossRefGoogle Scholar
  29. 29.
    C. Gabrielli, P. Moçotéguy, H. Perrot, R. Wiart, J. Electroanal. Chem. 572, 367 (2004)CrossRefGoogle Scholar
  30. 30.
    H. Zhang, H. Lu, N. Hu, J. Phys. Chem. B 110, 2171 (2006)CrossRefGoogle Scholar
  31. 31.
    G.A. Lange, S. Eugénio, R.G. Duarte, T.M. Silva, M.J. Carmezim, M.F. Montemor, J. Electroanal. Chem. 737, 85 (2015)CrossRefGoogle Scholar
  32. 32.
    D. Menshykau, R.G. Compton, Electroanalysis 20, 2387 (2008)CrossRefGoogle Scholar
  33. 33.
    D. He, S. Xing, B. Sun, H. Cai, H. Suo, C. Zhao, Electrochim. Acta 210, 639 (2016)CrossRefGoogle Scholar
  34. 34.
    D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, J. Power Sources 242, 687 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Chen, J. Xu, S. Zhou, N. Zhao, C.P. Wong, J. Mater. Chem. A 3, 17385 (2015)CrossRefGoogle Scholar
  36. 36.
    A.M.C.L. De Medina, S.L. Marchiano, A.J. Arvia, J. Appl. Electrochem. 8, 121 (1987)CrossRefGoogle Scholar
  37. 37.
    X. Xiao, M.E. Roberts, D.R. Wheeler, X. Xiaoyin, M.E. Roberts, D.R. Wheeler, C.M. Washburn, Th.L. Edwards, S.M. Brozik, G.A. Montano, B.C. Bunker, D.B. Burckel, R. Polsky, ACS. Appl. Mater. Interfaces 2, 3179 (2010)CrossRefGoogle Scholar
  38. 38.
    A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 1st edn. (Wiley, New York, 1980), pp. 198–232Google Scholar
  39. 39.
    Y. Li, S. Chang, X. Liu, J. Huang, J. Yin, G. Wang, D. Cao, Electrochim. Acta 85, 393 (2012)CrossRefGoogle Scholar
  40. 40.
    T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, Z. Sun, Electrochim. Acta 55, 4170 (2010)CrossRefGoogle Scholar
  41. 41.
    M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 1872 (2009)CrossRefGoogle Scholar
  42. 42.
    G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1 (2011)CrossRefGoogle Scholar
  43. 43.
    S. Eugénio, T.M. Silva, M.J. Carmezim, R.G. Duarte, M.F. Montemor, J. Appl. Electrochem. 44, 455 (2014)CrossRefGoogle Scholar
  44. 44.
    K. Chen, D. Xue, J. Nanoeng. Nanomanuf. 4, 50 (2014)CrossRefGoogle Scholar
  45. 45.
    U. Ramabadran, G. Ryan, X. Zhou, S. Farhat, F. Manciu, Y. Tong, R. Ayler, G. Garner, Materials 10, 1295 (2017)CrossRefGoogle Scholar
  46. 46.
    N. Arsalani, A.G. Tabrizi, L.S. Ghadimi, J. Mater. Sci. Mater. Electron. 29, 6077 (2018)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Faculty of Engineering, School of Metallurgy and Materials EngineeringUniversity of TehranTehranIran

Personalised recommendations