Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 2, pp 269–282 | Cite as

Removal of nerve agent sarin simulant from aqueous solution using the ZSM-5/CoFe2O4 NPs adsorbent

  • Sina YektaEmail author
  • Meysam Sadeghi
  • Daryoush Mirzaei
  • Abedin Zabardasti
  • Saeid Farhadi
Original Paper
  • 42 Downloads

Abstract

The zeolite ZSM-5 (MFI-5) was synthesized by the hydrothermal method. The cobalt ferrite spinel nanoparticles (29.4 wt% of CoFe2O4 NPs) were immobilized over it via the ultrasound assisted dispersion route to acquire the novel zeolite ZSM-5/CoFe2O4 NPs adsorbent. The synthesized samples were characterized by XRD, FTIR, VSM, AFM, FESEM, TEM, EDAX, and X-ray dot-mapping. The ZSM-5/CoFe2O4 has been proposed for the effective removal of DMMP (dimethyl methyl phosphonate) a simulant of nerve agent sarin from aqueous solution. The analysis results from both GC-FID and GC–MS clearly proved the substantial adsorption–degradation phenomenon. Further, the effect of several factors including contact time, initial concentration, adsorbent dose, and adsorbent type on the removal of DMMP were surveyed. The GC-FID analysis data confirmed the maximum removal of 94.3% for DMMP. The parameters namely: contact time (50 min), adsorbent dose (0.1 g), and initial concentration (50 mg/L) were considered as optimized values for the reaction. Moreover, the reaction kinetic was studied applying first order model. The half-life (t1/2) and rate constant (k) were calculated as 13.27 min and 0.0522 min−1, respectively. Ultimately, the less toxic methyl phosphoric acid as the degradation and hydrolysis product of the DMMP by the ZSM-5/CoFe2O4 NPs was emerged and identified.

Keywords

ZSM-5/CoFe2O4 NPs Removal DMMP Adsorption Degradation MPA 

Notes

Acknowledgements

The authors give their sincere thanks to the Lorestan University, Khorramabad, Iran for all sincere supports.

References

  1. 1.
    L. Viveros, S. Paliwal, D. McCrae, J. Wild, A. Simonian, Sens. Actuators B 115, 150 (2006)Google Scholar
  2. 2.
    N. Sharma, R. Kakkar, Adv. Mater. Lett. 4, 508 (2013)Google Scholar
  3. 3.
    J. Liu, T. Chakraborti, C. Pope, Toxicol. Appl. Pharmacol. 178, 102 (2002)Google Scholar
  4. 4.
    J.R. Cooper, F.E. Bloom, R.H. Roth, The Biochemical Basis of Neuropharmacology, 8th edn. (Oxford University Press, Oxford, 2003), pp. 7–65Google Scholar
  5. 5.
    B. Eskenazi, K. Harley, A. Bradman, E. Weltzien, N.P. Jewell, B. Barr, C.E. Furlong, N.T. Holland, Environ. Health. Perspect. 112, 1116 (2004)Google Scholar
  6. 6.
    World Health Organization (WHO), Public Health Impact of Pesticides Used in Agriculture (World Health Organization, Switzerland: Geneva, 1990), http://www.who.int/iris/handle/10665/39772. Accessed 25 May 2018
  7. 7.
    J.M. Battershill, P.M. Edwards, M.K. Johnson, Food Chem. Toxicol. 42, 1279 (2004)Google Scholar
  8. 8.
    C.G. Braden, E.C. Greg, Curr. Org. Chem. 11, 255 (2007)Google Scholar
  9. 9.
    Q. Zheng, Y.C. Fu, J. Xu, Proced. Eng. 7, 179 (2010)Google Scholar
  10. 10.
    M. Sadeghi, H. Ghaedi, S. Yekta, E. Babanezhad, J. Environ. Chem. Eng. 4, 2990 (2016)Google Scholar
  11. 11.
    S.L. Bartelt-Hunt, D.R.U. Knappe, M.A. Barlaz, Environ. Sci. Technol. 38, 112 (2008)Google Scholar
  12. 12.
    Z. Ying, Y. Jiang, X. Du, G. Xie, J. Yu, H. Wang, Sens. Actuators B 125, 167 (2007)Google Scholar
  13. 13.
    Y.C. Chen, A.V. Vorontsov, P.G. Smirniotis, Photochem. Photobiol. Sci. 2, 694 (2003)Google Scholar
  14. 14.
    D.W. Skaf, A.M. Grannas, R.D. Weinstein, R. Greeley, J. Chem. Eng. Process Technol. 6, 235 (2015)Google Scholar
  15. 15.
    S. Ma, J. Zhou, Y.C. Kang, J.E. Reddic, D.A. Chen, Langmuir 20, 9686 (2004)Google Scholar
  16. 16.
    S.N. Azizi, S. Ghasemi, S. Kavian, Biosens. Bioelectron. 62, 1 (2014)Google Scholar
  17. 17.
    C.S. Cundy, Chem. Rev. 103, 663 (2003)Google Scholar
  18. 18.
    C.J. Rhodes, Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 103, 287 (2007)Google Scholar
  19. 19.
    Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106, 896 (2006)Google Scholar
  20. 20.
    F. Mazloomi, M. Jalali, J. Environ. Chem. Eng. 4, 1664 (2016)Google Scholar
  21. 21.
    S. Wang, Y. Peng, Chem. Eng. J. 156, 11 (2010)Google Scholar
  22. 22.
    N.K. Jensen, T.E. Rufford, G. Watson, D.K. Zhang, K.I. Chan, E.F. May, J. Chem. Eng. Data 57, 106 (2012)Google Scholar
  23. 23.
    S. Mintova, V. Valtchev, Microporous Mesopor. Mater. 55, 171 (2002)Google Scholar
  24. 24.
    I.C. Ostroski, M.A.S.D. Barros, E.A. Silva, J.H. Dantas, P.A. Arroyo, O.C.M. Lima, J. Hazard. Mater. 161, 1404 (2009)Google Scholar
  25. 25.
    M. Xue, R. Chitrakar, K. Sakane, T. Hirotsu, K. Ooi, Y. Yoshimura, M. Toba, Q. Feng, J. Colloid Interface Sci. 298, 535 (2006)Google Scholar
  26. 26.
    T.K. Phung, M.M. Carnasciali, E. Finocchio, G. Busca, Appl. Catal. A Gen. 470, 72 (2014)Google Scholar
  27. 27.
    Y. Wang, F. Lin, W. Pang, J. Hazard. Mater. 160, 371 (2008)Google Scholar
  28. 28.
    V. Rakic, V. Roc, V. Dondur, A. Auroux, Catal. Today 110, 272 (2005)Google Scholar
  29. 29.
    S. Sang, F. Chang, Z. Liu, C. He, Y. He, L. Xu, Catal. Today 93, 729 (2004)Google Scholar
  30. 30.
    S.H. Sun, H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002)Google Scholar
  31. 31.
    S.A. Grigoriev, M.S. Mamat, K.A. Dzhus, G.S. Walker, P. Millet, Int. J. Hydrog. Energy. 36, 4143 (2011)Google Scholar
  32. 32.
    Y.G. Sun, Y.N. Xia, Science 298, 2176 (2002)Google Scholar
  33. 33.
    R. Klajn, A.O. Pinchuk, G.C. Schatz, B.A. Grzybowski, Angew. Chem. Int. Ed. 46, 8363 (2007)Google Scholar
  34. 34.
    L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000)Google Scholar
  35. 35.
    Y.J. Kang, C.B. Murray, J. Am. Chem. Soc. 132, 7568 (2010)Google Scholar
  36. 36.
    J.M. Yan, X.B. Zhang, T. Akita, J. Am. Chem. Soc. 132, 5326 (2010)Google Scholar
  37. 37.
    V. Mazumder, M.F. Chi, K.L. More, S.H. Sun, J. Am. Chem. Soc. 132, 7848 (2010)Google Scholar
  38. 38.
    R. Gref, P. Couvreur, G. Barratt, E. Mysiakine, Biomaterials 24, 4529 (2003)Google Scholar
  39. 39.
    R. Klajn, J.F. Stoddart, B.A. Grzybowski, Chem. Soc. Rev. 39, 2203 (2010)Google Scholar
  40. 40.
    F. Dubois, B. Mahler, B. Dubertret, J. Am. Chem. Soc. 129, 482 (2007)Google Scholar
  41. 41.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, Nano Lett. 7, 766 (2007)Google Scholar
  42. 42.
    J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, J. Am. Chem. Soc. 126, 7176 (2004)Google Scholar
  43. 43.
    C. Zheng, Y. Du, M. Feng, H. Zhan, Appl. Phys. Lett. 93, 143108 (2008)Google Scholar
  44. 44.
    I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, J. Am. Chem. Soc. 125, 7860 (2003)Google Scholar
  45. 45.
    J.N. Anker, W.P. Hall, O. Lyandres, Nat. Mater. 7, 442 (2008)Google Scholar
  46. 46.
    J.H. Park, Y.T. Lim, O.O. Park, Chem. Mater. 16, 688 (2004)Google Scholar
  47. 47.
    H. Nakanishi, B.A. Grzybowski, J. Phys. Chem. Lett. 1, 1428 (2010)Google Scholar
  48. 48.
    B.Q. Sun, E. Marx, N.C. Greenham, Nano Lett. 3, 961 (2003)Google Scholar
  49. 49.
    J.W.M. Chon, C. Bullen, P. Zijlstra, M. Gu, Adv. Funct. Mater. 17, 875 (2007)Google Scholar
  50. 50.
    Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, J.C. Crittenden, Water Res. 42, 2204 (2008)Google Scholar
  51. 51.
    C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122, 6263 (2000)Google Scholar
  52. 52.
    K.K. Mohaideen, P.A. Joy, Appl. Phys. Lett. 101, 072405 (2012)Google Scholar
  53. 53.
    N.R. Shiju, V.V. Guliants, Appl. Catal. A 356, 1 (2009)Google Scholar
  54. 54.
    J. Gao, H. Gu, B. Xu, Acc. Chem. Res. 42, 1097 (2009)Google Scholar
  55. 55.
    A. Cabãnas, M. Poliakoff, J. Mater. Chem. 11, 1408 (2001)Google Scholar
  56. 56.
    C. Cannas, A. Musinu, D. Peddis, G. Piccaluga, Chem. Mater. 18, 3835 (2006)Google Scholar
  57. 57.
    Y. Ahn, E.J. Choi, S. Kim, H.N. Ok, Mater. Lett. 50, 47 (2001)Google Scholar
  58. 58.
    Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60, 3548 (2006)Google Scholar
  59. 59.
    J. Saffari, D. Ghanbari, N. Mir, K. Khandan-Barani, J. Ind. Eng. Chem. 20, 4119 (2014)Google Scholar
  60. 60.
    M. Khatamian, B. Divband, M. Daryana, Nanomed. J. 3, 268 (2016)Google Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor University (PNU)TehranIran
  2. 2.Department of ChemistryQaemshahr Branch, Islamic Azad UniversityQaemshahrIran
  3. 3.Department of ChemistryLorestan UniversityKhorramabadIran

Personalised recommendations