Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 2, pp 253–261 | Cite as

Multi-functionalized ionic liquid with in situ-generated palladium nanoparticles for Suzuki, Heck coupling reaction: a comparison with deep eutectic solvents

  • D. S. GaikwadEmail author
  • K. A. Undale
  • D. B. Patil
  • D. M. Pore
Original Paper
  • 44 Downloads

Abstract

A new catalytic system for Suzuki and Heck coupling has been developed from multi-functionalized task specific ionic liquid (TSIL) and in situ formed palladium nanoparticles (PdNps). The generated PdNPs were characterized by UV–Visible spectroscopy and transmission electron microscopy (TEM) analysis. These PdNPs have found size below 10 nm and exhibited a excellent catalytic activity in the cross-coupling of aryl halide without using external phosphine ligand. Along with electron deficient olefins, electron rich olefins were also undergo smooth reaction giving excellent yield. The results obtained in ionic liquid are compared with results obtained in deep eutectic solvents. Progress of reaction was found very smooth in ionic liquid rather than in deep eutectic solvents. The aqueous system containing ionic liquid along with PdNPs was recycled for seven times, without any significant loss.

Graphical abstract

Keywords

Multi-functionalized ionic liquid Suzuki–Miyaura Heck-Mizoroki Palladium nanoparticles Deep eutectic solvents Transmission electron microscopy 

Notes

Acknowledgements

One of authors DSG gratefully acknowledges DST New Delhi for financial assistance under Start-up research grant [No. SB/FT/CS-145/2014].

Supplementary material

13738_2018_1503_MOESM1_ESM.docx (203 kb)
Supplementary material 1 (DOCX 202 KB)

References

  1. 1.
    Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Chem. Soc. Rev. 42, 3127–3171 (2013)CrossRefGoogle Scholar
  2. 2.
    Y. Shen, J. Mater. Chem. A 3, 13114–13188 (2015)CrossRefGoogle Scholar
  3. 3.
    M.M. Khin, A.S. Nair, V.J. Babu, R. Murugan, S. Ramakrishna, Energy Environ. Sci. 5, 8075–8109 (2012)CrossRefGoogle Scholar
  4. 4.
    R.M. Fratila, S.R. Fernandez, J.M. Dela Fuente, Nanoscale 7, 8233–8260 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Iravani, Green Chem. 13, 2638–2650 (2011)CrossRefGoogle Scholar
  6. 6.
    B.S. Takale, M. Bao, Y. Yamamoto, Org. Biomol. Chem. 12, 2005–2027 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Santra, A.K. Bagdi, A. Majee, A. Hajra, RSC Adv. 3, 24931–24935 (2013)CrossRefGoogle Scholar
  8. 8.
    C.C. Cassol, A.P. Umpierre, G. Machado, S.I. Wolke, J. Dupont, J. Am. Chem. Soc. 127, 3298–3299 (2005)CrossRefGoogle Scholar
  9. 9.
    H.Y. Jiang, X.X. Zheng, Appl. Cat. A 499, 118–123 (2015)CrossRefGoogle Scholar
  10. 10.
    A.G. Choghamarani, M. Norouzi, J. Magn. Magn. Mater. 401, 832–840 (2016)CrossRefGoogle Scholar
  11. 11.
    G. Shi, Z. Wang, J. Xia, S. Bi, Y. Li, F. Zhang, L. Xia, Y. Li, Y. Xia, L. Xia, Electrochim. Acta 142, 167–172 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Dupont, J.D. Scholten, Chem. Soc. Rev. 39, 1780–1804 (2010)CrossRefGoogle Scholar
  13. 13.
    J.D. Scholten, B.C. Leal, J. Dupont, J. ACS Catal. 2, 184–200 (2012)CrossRefGoogle Scholar
  14. 14.
    G. Chatel, D.R. MacFarlane, Chem. Soc. Rev. 43, 8132–8149 (2014)CrossRefGoogle Scholar
  15. 15.
    Q. Zhang, S. Zhang, Y. Deng, Green Chem. 13, 2619–2637 (2011)CrossRefGoogle Scholar
  16. 16.
    V.I. Parvulescu, C. Hardacre, Chem. Rev. 107, 2615–2665 (2007)CrossRefGoogle Scholar
  17. 17.
    N. Jain, A. Kumar, S.S. Chauhan, M.S. Chauhan, Tetrahedron 61, 1015–1060 (2005)CrossRefGoogle Scholar
  18. 18.
    T. Welton, Chem. Rev. 99, 2071–2083 (1999)CrossRefGoogle Scholar
  19. 19.
    C. Yue, D. Fang, L. Liu, T.F. Yi, J. Mol. Liq. 163, 99–121 (2011)CrossRefGoogle Scholar
  20. 20.
    N.D. Khupse, A. Kumar, Indian J. Chem. 49, 635–648 (2010)Google Scholar
  21. 21.
    D.A. Alonso, A. Baeza, R. Chinchilla, G. Guillena, I.M. Pastor, D. Ramon, J. Eur. Org. Chem. 612–632 (2016)Google Scholar
  22. 22.
    N. Guajardo, C.R. Muller, R. Schrebler, C. Carlesi, P. Domínguez de María, Chem. Cat. Chem. 8, 1020–1027 (2016)Google Scholar
  23. 23.
    B.Y. Zhao, P. Xu, F.X. Yang, H. Wu, M.H. Zong, W.Y. Lou, ACS Sustain. Chem. Eng. 3, 2746–2755 (2015)CrossRefGoogle Scholar
  24. 24.
    I. Juneidi, M. Hayyan, M.A. Hashim, RSC Adv. 5, 83636–83647 (2015)CrossRefGoogle Scholar
  25. 25.
    I. Juneidi, M. Hayyan, O.M. Ali, Environ. Sci. Pollut. Res. 23, 7648–7659 (2016)CrossRefGoogle Scholar
  26. 26.
    X. Marset, A. Khoshnood, L. Sotorríos, E. Gómez-Bengoa, D.A. Alonso, D.J. Ramón, Chem. Cat. Chem. 9, 1269–1275 (2017)Google Scholar
  27. 27.
    X. Marset, G. Guillena, D.J. Ramón, Chem. Cat. Chem. 23, 10522–10526 (2017)Google Scholar
  28. 28.
    G. Imperato, R. Vasold, B. König, Adv. Synth. Catal. 348, 2243–2247 (2006)CrossRefGoogle Scholar
  29. 29.
    F. Ilgen, B. König, Green Chem. 11, 848–854 (2009)CrossRefGoogle Scholar
  30. 30.
    G. Imperato, S. Höger, D. Lenoir, B. König, Green Chem. 8, 1051–1055 (2006)CrossRefGoogle Scholar
  31. 31.
    D.S. Gaikwad, Y.K. Park, D.M. Pore, Tetrahedron Lett. 53, 3077–3081 (2012)CrossRefGoogle Scholar
  32. 32.
    J.D. Patil, S.N. Korade, S.A. Patil, D.S. Gaikwad, D.M. Pore, RSC Adv. 5, 79061–79069 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Tang, G.A. Baker, H. Zhao, Chem. Soc. Rev. 41, 4030–4066 (2012)CrossRefGoogle Scholar
  34. 34.
    P. Twu, Q. Zhao, W.R. Pitner, W.E. Acree, G.A. Baker, J.L. Anderson, J Chromatogr A 1218, 5311–5318 (2011)CrossRefGoogle Scholar
  35. 35.
    M.M. Huang, Y. Jiang, P. Sasisanker, G.W. Driver, H.J. Weingartner, Chem. Eng. Data. 56, 1494–1499 (2011)CrossRefGoogle Scholar
  36. 36.
    X. Yuan, N. Yan, S.A. Katsyuba, E.E. Zvereva, Y. Kou, P. Dyson, J. Phys. Chem. Chem. Phys. 14, 6026–6033 (2012)CrossRefGoogle Scholar
  37. 37.
    P. Gunasekaran, K. Balamurugan, S. Sivakumar, S. Perumal, J.C. Menendez, A.I. Almansourc, Green Chem. 14, 750–757 (2012)CrossRefGoogle Scholar
  38. 38.
    P. Norcott, C. Spielman, C.S.P. McErlean, Green Chem. 14, 605–609 (2012)CrossRefGoogle Scholar
  39. 39.
    D.S. Gaikwad, K.A. Undale, D.B. Patil, D.M. Pore, S.N. Korade, A.A. Kamble, Res. Chem. Intermediat. 43, 4445–4458 (2017)CrossRefGoogle Scholar
  40. 40.
    S.K. Patil, D.V. Awale, M.M. Vadiyar, S.A. Patil, S.C. Bhise, A.H. Gore, G.B. Kolekar, J.H. Kim, S.S. Kolekar, Chemistryselect 2, 4124–4130 (2017)CrossRefGoogle Scholar
  41. 41.
    B.C. Ranu, S. Banerjee, Org. Lett. 7, 3049–3052 (2005)CrossRefGoogle Scholar
  42. 42.
    A.D. Sawant, D.G. Raut, N.B. Daravatkar, U.V. Desai, M.M. Salunkhe, Cat. Commun. 12, 273–276 (2010)CrossRefGoogle Scholar
  43. 43.
    P.P. Salvi, A.M. Mandhare, A.S. Sartape, D.K. Pawar, S.H. Han, S.S. Kolekar, C. R. Chime 14, 878–882 (2011)CrossRefGoogle Scholar
  44. 44.
    X. Li, K.H. Row, J. Sep. Sci. 39, 3505–3520 (2016)CrossRefGoogle Scholar
  45. 45.
    B.L. Gadilohar, G.S. Shankarling, J. Mol. Liq. 227, 234–261 (2017)CrossRefGoogle Scholar
  46. 46.
    M.H.G. Prechtl, J.D. Scholten, J. Dupont, Molecules 15, 3441–3461 (2010)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • D. S. Gaikwad
    • 1
    Email author
  • K. A. Undale
    • 1
  • D. B. Patil
    • 1
  • D. M. Pore
    • 2
  1. 1.Department of ChemistryVivekanand CollegeKolhapurIndia
  2. 2.Department of ChemistryShivaji UniversityKolhapurIndia

Personalised recommendations