Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 2, pp 231–241 | Cite as

TiO2/Bi2S3 ball-and-stick structure heterojunction prepared on FTO glass as a photoanode for solar cells

  • Senlin Li
  • Jinliang HuangEmail author
  • Xiangmei Ning
  • Yongchao Chen
  • Qingkui Shi
Original Paper
  • 72 Downloads

Abstract

One-dimensional titanium dioxide (TiO2) nanorods (NRs) array are grown on transparent conductive fluorine-doped tin oxide (FTO) glass substrate by the simple hydrothermal method. Bi2S3 nanopatricles (NPs) are loaded in the TiO2/FTO by a hydrothermal deposition method to a novel ball-and-stick heterostructure for enhancing the photoelectrochemical (PEC) properties. The structures, morphologies and optical properties of the prepared films are characterized by XRD, FESEM, TEM and UV–Vis spectrometer. The photoelectrochemical properties of the composite films are studied. The results show that all of the obtained TiO2 films are monocrystalline with a rutile structure and grow along the c axis direction. Bi2S3 nanoparticles are successfully deposited on the top of the TiO2 NRs, forming a Bi2S3/TiO2 ball-and-stick structure heterojunction. The optical absorption edges of the prepared composite films are extended to the visible light range, and the absorption edges of the samples show an obvious redshift. The composite films exhibited better photoelectrochemical properties. The analysis of performance include linear voltammetry and transient photocurrent reveals that the photocurrent of Bi2S3/TiO2 NRs is the photocurrent of pure TiO2 NRs. All these results indicate the potential application of the novel TiO2 NRs in solar cells.

Keywords

TiO2 nanorods Bi2S3 nanoparticles Hydrothermal method Ball-and-stick structure Photoelectrochemical performance 

Notes

Acknowledgements

The Natural Science Foundation of Henan Province (No. 162300410088) has financially supported this work.

References

  1. 1.
    X. Wu f, S. Fang, Y. Zheng, J. Sun, K.L. Lv, Thiourea-modified TiO2 nanorods with enhanced photocatalytic activity. Molecules 21, 181–203 (2016)CrossRefGoogle Scholar
  2. 2.
    R. Mandal, S. Panja, Energy procedia: design and feasibility studies of a small scale grid connected solar PV power plant. Energy Procedia 90, 191–199 (2016)CrossRefGoogle Scholar
  3. 3.
    L.B. Yu, Z. Li, Y.B. Liu, F. Cheng, S.Q. Sun, Enhanced photoelectrochemical performance of CdSe/Mn-CdS/TiO2 nanorod arrays solar cell. Appl. Surf. Sci. 305, 359–365 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Anusorn, T. Kevin, T. Kensuke, K. Masaru, V. Prashant, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRefGoogle Scholar
  5. 5.
    I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)CrossRefGoogle Scholar
  6. 6.
    National Renewable Energy Laboratory, NREL efficiency chart. https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg
  7. 7.
    M. Sasikumar, N.P. Subiramaniyam, Microstructure, electrical and humidity sensing properties of TiO2/polyaniline nanocomposite films prepared by sol–gel spin coating technique. J. Mater. Sci. Mater. Electron. 29, 7099–7106 (2018)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, L.L. Wang, H.R. Wang, M.Y. Xiong, T.Q. Yang, G.S. Zakharova, Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature. Sens. Actuators B. Chem. 236, 529–536 (2016)CrossRefGoogle Scholar
  9. 9.
    F. Xiao, W. Zhou, B.J. Sun, H.Z. Li, P.Z. Qiao, L.P. Ren, X.J. Zhao, H.G. Fu, Engineering oxygen vacancy on rutile TiO2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution. Sci. China Mater. 61, 822–830 (2018)CrossRefGoogle Scholar
  10. 10.
    V. Bolis, C. Busco, M. Ciarletta, C. Distasi, J. Erriquez, F. Ivana, S. Livraghi, S. Morel, Hydrophilic/hydrophobic features of TiO2 nanoparticles as a function of crystal phase, surface area and coating, in relation to their potential toxicity in peripheral nervous system. J. Colloid Interface Sci. 369, 28–39 (2012)CrossRefGoogle Scholar
  11. 11.
    Y.J. Lu, J.H. Jia, Preparation and photoelectrical properties of Bi2S3 quantum dots sensitized TiO2 nanorod-arrays. Chin. J. Inorg. Chem. 31, 1091–1098 (2015)Google Scholar
  12. 12.
    B. Zhu, X.M. Dai, Q.F. Li, C.S. Deng, Template-based synthesis and microstructure characterization of TiO2 nano-array. Chin. J. Process Eng. 7, 160–163 (2007)Google Scholar
  13. 13.
    R. Mahendiran, K. Navaneetha Pandiyaraj, K. Kandavelu, D. Saravanan, Investigation of physico-chemical properties of TiO2 nanorod by direct sol filling and heating sol–gel template method. J. Nanosci. Nanotechnol. 2, 79–82 (2014)Google Scholar
  14. 14.
    S.L. Kang, H. Jaesung, O.S. Hyun, D.K. Young, Jinhyo, B 2010 growth of TiO2 nanorods on a Ta substrate by metal-organic chemical vapor deposition J. Nanosci. Nanotechnol. 10 3346–3349 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Satoshi, I. Kazuhiro, H. Sakura, Low pressure chemical vapor deposition of TiO2 layer in hydrogen-ambient. J. Cryst. Process Technol. 4, 185–192 (2014)CrossRefGoogle Scholar
  16. 16.
    I. Masoud, D.N. Fatemeh, A. Ebrahim, N. Keyvan, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells. J. Alloy. Compd. 659, 44–50 (2016)CrossRefGoogle Scholar
  17. 17.
    K.D. Love, R. Jungho, L. Jeongmuk, O. Byungtaek, H.P. Jung, K. Byounggyu, S.J. Jum, Hydrothermal synthesis of titanate nanotubes from TiO2 nanorods prepared via a molten salt flux method as an effective adsorbent for strontium ion recovery. RSC Adv. 6, 98449–98456 (2016)CrossRefGoogle Scholar
  18. 18.
    J.S. Wan, R. Liu, Y. Tong, S.H. Chen, Y.X. Hu, B.Y. Wang, Y. Xu, H. Wang, Hydrothermal etching treatment to rutile TiO2 nanorod arrays for improving the efficiency of CdS-sensitized TiO2 solar cells. Nanoscale Res. Lett. 11, 12–12 (2016)CrossRefGoogle Scholar
  19. 19.
    M.R. Sui, C.P. Han, X.Q. Gu, Y. Wang, Tang L, H. Tang, Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method. Optoelectron. Lett. 12, 161–165 (2016)CrossRefGoogle Scholar
  20. 20.
    Z.L. Zhang, J.F. Li, X.L. Wang, J.Q. Qin, W.J. Shi, Y.F. Liu, H.P. Gao, Y.L. Mao, Enhancement of Perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer. Nanoscale Res. Lett. 12, 43–48 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRefGoogle Scholar
  22. 22.
    X.J. Feng, S. Karthik, K.V. Oomman, P. Maggie, J. Thomas, A.G. Land Craig, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8, 378–3786 (2008)Google Scholar
  23. 23.
    G.E. Zeng, A.X. Wei, J. Liu, W. Zhao, C.B. Liu, Synthesis and photovoltaic devices performance of single crystalline TiO2 nanowire bundle arrays. J. Inorg. Mater. 25, 1105–1109 (2010)CrossRefGoogle Scholar
  24. 24.
    K.Y. Guo, Z.F. Liu, J.H. Han, X.Q. Zhang, Y.J. Li, T.T. Hong, C.L. Zhou, Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers. J. Power Sour. 285, 185–194 (2015)CrossRefGoogle Scholar
  25. 25.
    Y.T. Li, L. Wei, X.Y. Chen, R.Z. Zhang, X. Sui, Y.X. Chen, J. Jiao, L.M. Mei, Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 67–82 (2013)CrossRefGoogle Scholar
  26. 26.
    Y.L. Chen, Q. Tao, W.Y. Fu, H.B. Yang, X.M. Zhou, S. Su, D. Ding, Y.N. Mu, X. Li, M.H. Li, Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays. Chem. Commun. 50, 9509–95012 (2014)CrossRefGoogle Scholar
  27. 27.
    Y.P. Luo, L. Wang, Y. Zou, X. Sheng, L.T. Chang, D.R. Yang 2012 Electrochemically deposited Cu2O on TiO2 nanorod arrays for photovoltaic application. Electrochem. Solid State Lett. 15 H34-H46Google Scholar
  28. 28.
    T. Wang, B.Y. Wang, W. Wei, H. Ding, Y.X. Hu, J. Zhang, H.P. Wang, Preparation and photovoltaic properties Cu2O/TiO2 nanorod heterojunction solar cells. Sci. Adv. Mater. 5, 1770–1774 (2013)CrossRefGoogle Scholar
  29. 29.
    K. Fu, J.Z. Huang, N.N. Yao, X.L. Deng, X.J. Xu, L. Li, Hybrid nanostructures of TiO2 nanorod array/Cu2O with a CH3NH3PbI3 interlayer for enhanced photocatalytic activity and photoelectrochemical performance RSC Adv. 6 57695–57700 (2016)CrossRefGoogle Scholar
  30. 30.
    Q. Sun, Y. Li, X.M. Sun, L.F. Dong, CuO and CuS quantum dot sensitized single-crystal TiO2 nanorod arrays and their photoelectrical performance. China Sci. Pap. 9, 218–223 (2014)Google Scholar
  31. 31.
    K.Y. Guo, Z.F. Liu, J.H. Han, Z.C. Liu, Y.J. Li, B. Wang, T. Cui, C. Zhou, Hierarchical TiO2–CuInS2 core-shell nanoarrays for photoelectrochemical water splitting Phys. Chem. Chem. Phys. 16, 16204–16213 (2014)CrossRefGoogle Scholar
  32. 32.
    B.K. Liu, D.J. Wang, Y. Zhang, H.M. Fan, Y.H. Lin, T.F. Jiang, T.F. Xie, Photoelectrical properties of Ag2S quantum dot-modified TiO2 nanorod arrays and their application for photovoltaic devices. Dalton Trans. 42, 2232–2237 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Shuang, L. Ruitao, X.Y. Cui, Z. Xie, J. Zheng, Z.J. Zhang, Efficient photocatalysis with graphene oxide/Ag/Ag2S–TiO2 nanocomposites under visible light irradiation. Rsc Adv. 8, 5784–5791 (2018)CrossRefGoogle Scholar
  34. 34.
    R. Vogel, P. Hoyer, W. Horst, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183–3188 (1994)CrossRefGoogle Scholar
  35. 35.
    F.F. Cai, F. Yang, Y.F. Jia, C. Ke, C.H. Cheng, Y. Zhao, Bi2S3-modified TiO2 nanotube arrays: easy fabricationof heterostructure and effective enhancementof photoelectrochemical property. J. Mater. Sci. 48, 6001–6007 (2013)CrossRefGoogle Scholar
  36. 36.
    Z.J. Zhou, J.Q. Fan, X. Wang, W.H. Zhou, Z.L. Du, S.X. Wu, Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 3, 4349–4353 (2011)CrossRefGoogle Scholar
  37. 37.
    L. Tang, Y.C. Deng, G.M. Zeng, W. Hu, J.J. Wang, Y.Y. Zhou, J.J. Wang, J. Tang, W. Fang, CdS/Cu2S co-sensitized TiO2 branched nanorod arrays of enhanced photoelectrochemical properties by forming nanoscale heterostructure J. Alloys Compd. 662 516–527 (2016)CrossRefGoogle Scholar
  38. 38.
    S.L. Li, J.L. Huang, X.M. Ning, Y.C. Chen, Q.K. Shi, Preparation and photoelectrochemical performance of nano Bi2S3–TiO2 composites. Funct. Mater. Lett. 11, 1850055–1850061 (2018)CrossRefGoogle Scholar
  39. 39.
    H.M. Jia, W.W. He, B.B. Zhang, L. Yao, X.K. Yang, Z. Zheng, Facile synthesis of bismuth oxyhalide nanosheet films with distinct conduction type and photo-induced charge carrier behavior Appl. Surf. Sci. 441 832–840 (2018)CrossRefGoogle Scholar
  40. 40.
    L.Y. Cheng, H.M. Ding, C.H. Chen, N.N. Wang, Ag2S/Bi2S3 co-sensitized TiO2 nanorod arrays prepared on conductive glass as a photoanode for solar cells. J. Mater. Sci. Mater. Electron. 27, 3234–3239 (2016)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Senlin Li
    • 1
  • Jinliang Huang
    • 1
    Email author
  • Xiangmei Ning
    • 1
  • Yongchao Chen
    • 1
  • Qingkui Shi
    • 1
  1. 1.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangChina

Personalised recommendations