Journal of the Iranian Chemical Society

, Volume 16, Issue 2, pp 219–229 | Cite as

Fe(III)–oxalate-mediated solar degradation of furfural in the presence of persulfate: operational parameters and artificial neural network modeling

  • Ali Akbar Babaei
  • Ali Reza Rahmani
  • Fahime Zamani
  • Halime AlmasiEmail author
Original Paper


Furfural is an organic matter which is commonly used in solid resin plastic production and paper manufacturing. In this study, the removal of furfural was carried out using oxalate (OX) and activated persulfate (PS) with Fe(III). The effect of pH, Fe(III) dosage, OX ion dosage, species radicals, the molar ratio of citric acid, coexisting substances, environmental applications, reaction mechanisms, and intermediates compound on the removal of furfural were investigated. In addition, artificial neural network (ANN) model was designed to determine the optimum value and importance of the effective variables to attain the higher efficiency. This study indicates the application of ANN for prediction of performances in competitive advance oxidation process. Intermediate compounds were identified, including ferulic acid –CO2, 2-furfural, oxime-, methoxy-phenyl, 2,2′-bifuran, and cyclohexasiloxane. The higher degradation efficiency was 85.8%, which was obtained at furfural 40 mg/L, Fe 0.002 g, PS 0.05 g, pH 4, and the molar ratio of citric acid: 1:1. Comparison between the photodegradation efficiency of experimental results and the predicted results of the designed ANN models showed that both processes have almost equal efficiency.

Graphical abstract


Oxalate Fe(III) Furfural Solar Persulfate Neural network 



Advanced oxidation processes


In situ chemical oxidation


Sulfate radical-based advanced oxidation processes




Sulfate radical




Tert-butyl alcohol


Citric acid


Natural organic matters


Hydroxyl radical



This research was sponsored by the Research Department at Ahvaz Jundishapur University of Medical Sciences (Grant number: 95s91). The researchers express their heartfelt gratitude to everyone involved in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    A.R. Rahmani, H. Rezaei-Vahidian, H. Almasi, F. Donyagard, ‎Environ. Process. 4, 3 (2017)Google Scholar
  2. 2.
    A.R. Rahmani, H. Rezaeivahidian, M. Almasi, A. Shabanlo, H. Almasi, Res. Chem. Intermed. 42, 2 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Saien, M. Moradi, A.R. Soleymani, Clean Soil Air Water. 45, 3 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. He, M. Pei, Y. Du, F. Yu, L. Wang, W. Guo, RSC Adv. 4, 57 (2014)Google Scholar
  5. 5.
    K.E. Manz, G. Haerr, J. Lucchesi, K.E. Carter, Chemosphere. 164, (2016)Google Scholar
  6. 6.
    A.R. Rahmani, F. Zamani, A. Shabanloo, H. Almasi, Avicenna J Environ Health Eng. 3, 2 (2016)Google Scholar
  7. 7.
    K.E. Manz, K.E. Carter, Chem. Eng. 327, 1021–1032 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Liu, T.A. Bruton, W. Li, J.V. Buren, C. Prasse, F.M. Doyle, D.L. Sedlak, ‎Environ. Sci. technol. 50, 2 (2016)Google Scholar
  9. 9.
    J.-Y. Hu, K. Tian, H. Jiang, Chemosphere 148, 34–40 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Ji, L. Wang, M. Jiang, Y. Yang, P. Yang, J. Lu, C. Ferronato, and J.-M. Chovelon,: ‎Environ. Sci. pollut. Res. 24, 24 (2017)Google Scholar
  11. 11.
    A. Rahmani, M. Samadi, R. Noroozi, World Acad. Sci. Eng. Technol. 5, 74 (2011)Google Scholar
  12. 12.
    M. Sadrnourmohamadi, A. Poormohammadi, H. Almasi, G. Asgari, A. Ahmadzadehe, A. Seid-Mohammadi, Sci. Total Environ. 75, 189 (2017)Google Scholar
  13. 13.
    P. Devi, U. Das, A.K. Dalai, Sci Total Environ. 571, (2016)Google Scholar
  14. 14.
    D. Li, D. Chen, Y. Yao, J. Lin, F. Gong, L. Wang, L. Luo, Z. Huang, L. Zhang, Chem. Eng. 288, (2016)Google Scholar
  15. 15.
    J. Lee, J. Kim, W. Choi, J Hazard. Mater. 274, (2014)Google Scholar
  16. 16.
    D. Zhou, F. Wu, N. Deng, Chem. 57, 4 (2004)Google Scholar
  17. 17.
    A.R. Esfahani, S. Hojati, A. Azimi, L. Alidokht, A. Khataee, M. Farzadian, Korean J. Chem. Eng. 31, 4 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Aghav, S. Kumar, S. Mukherjee, J. Hazard. Mater. 188, 1–3 (2011)CrossRefGoogle Scholar
  19. 19.
    M.H. Al Shamisi, A.H. Assi, H.A. Hejase, in Engineering education and research using MATLAB (InTech, 2011)Google Scholar
  20. 20.
    C. Zhao, L.E. Arroyo-Mora, A.P. DeCaprio, V.K. Sharma, D.D. Dionysiou, K.E. O’Shea, Water Res. 67, 144–153 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Rahmani, M. Samadi, A. Enayati Moafagh, J Res Health Sci. 8, 2 (2008)Google Scholar
  22. 22.
    H. Boucheloukh, W. Remache, F. Parrino, T. Sehili, H. Mechakra, Photochem. Photobiol. Sci. 16, 5 (2017)CrossRefGoogle Scholar
  23. 23.
    Y. Dong, L. He, M. Yang, Dyes Pigm. 77, 2 (2008)CrossRefGoogle Scholar
  24. 24.
    X. Ou, F. Zhang, C. Wang, Asian J. Chem. 24, 8 (2012)Google Scholar
  25. 25.
    M.E. Balmer, B. Sulzberger, ‎Environ. Sci. technol. 33, 14 (1999)CrossRefGoogle Scholar
  26. 26.
    N. Dulova, E. Kattel, M. Trapido, Chem. Eng. 318, 254–263 (2017)CrossRefGoogle Scholar
  27. 27.
    Y.-Q. Zhang, X.-F. Xie, S.-B. Huang, H.-Y. Liang, J. Cen. South Univ. 21, 4 (2014)Google Scholar
  28. 28.
    C. Tan, N. Gao, W. Chu, C. Li, M.R. Templeton, Sep. Purfi. Technol. 95, 44–48 (2012)CrossRefGoogle Scholar
  29. 29.
    C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Chem. 55, 9 (2004)Google Scholar
  30. 30.
    K.-Y.A. Lin, C.-H. Lin, Chem. Eng. J 325, 144–150 (2017)CrossRefGoogle Scholar
  31. 31.
    Z. Xu, C. Shan, B. Xie, Y. Liu, B. Pan, Appl. Catal. B 200, 439–447 (2017)CrossRefGoogle Scholar
  32. 32.
    H. Liang, Y. Zhang, S. Huang, I. Hussain, Chem. Eng. J. 218, 384–391 (2013)CrossRefGoogle Scholar
  33. 33.
    P. Avetta, A. Pensato, M. Minella, M. Malandrino, V. Maurino, C. Minero, K. Hanna, D. Vione, Environ. Sci. technol. 49, 2 (2014)Google Scholar
  34. 34.
    H. Tamura, K. Goto, T. Yotsuyanagi, M. Nagayama, Talanta. 21, 4 (1974)CrossRefGoogle Scholar
  35. 35.
    P. Zhou, B. Liu, J. Zhang, Y. Zhang, G. Zhang, C. Wei, J. Liang, Y. Liu, W. Zhang, Water Sci. Technol. 74, 8 (2016)Google Scholar
  36. 36.
    A.R. Esfahani, A.F. Firouzi, G. Sayyad, A. Kiasat, L. Alidokht, A. Khataee, Res. Chem. Intermed. 40, 1 (2014)CrossRefGoogle Scholar
  37. 37.
    F. Ghanbari, M. Moradi, M. Manshouri, J. Environ. Chem. Eng. 2, 3 (2014)CrossRefGoogle Scholar
  38. 38.
    C.-L. Kang, X.-J. Tang, X.-Q. Jiao, P. Guo, F.-M. Quan, X.-Y. Lin, Chem. Res. Chin. Univ. 25, 451–454 (2009)Google Scholar
  39. 39.
    A. Khataee, G. Dehghan, A. Ebadi, M. Zarei, M. Pourhassan, Bioresour. Technol. 101, 7 (2010)CrossRefGoogle Scholar
  40. 40.
    A.R. Rahmani, A. Poormohammadi, F. ZamaniYaser, T. Birgani, S. Jorfi, S. Gholizadeh, M.J. Mohammad, I. Almasi. Res. Chem. Intermed. 44, 9 (2018)CrossRefGoogle Scholar
  41. 41.
    I.P. Pozdnyakov, V.F. Plyusnin, V.P. Grivin, E. Oliveros, J. Photochem. Photobiol. A Chem. 307, 9–15 (2015)CrossRefGoogle Scholar
  42. 42.
    G. Liu, S. Zheng, X. Xing, Y. Li, D. Yin, Y. Ding, W. Pang, Chemosphere 78, 4 (2010)Google Scholar
  43. 43.
    S. Fatimah, W. Wiharto, in IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2017), p. 012052Google Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Ali Akbar Babaei
    • 1
  • Ali Reza Rahmani
    • 2
  • Fahime Zamani
    • 2
  • Halime Almasi
    • 1
    Email author
  1. 1.Department of Environmental Health Engineering, Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Environmental Health Engineering, Faculty of Health and Research Center for Health SciencesHamadan University of Medical ScienceHamadanIran

Personalised recommendations