Advertisement

High-performance visible light photocatalytic activity of cobalt (Co) doped CdS nanoparticles by wet chemical route

  • N. Jeevanantham
  • O. N. Balasundaram
Original Paper
  • 2 Downloads

Abstract

The role of cobalt (Co) dopant on structural, morphological, optical and photocatalytic properties of CdS nanoparticles were methodically reported. XRD analysis confirms that both pure and Co-doped CdS samples have cubic structure with no impurity phases detected and the results are good in agreement with the standard JCPDS value (Card No. 80-0019). TEM images reveal the spherical morphology with an average diameter of around 15–35 nm. A noticeable red-shift of absorption edge and bandgap narrowing can be attributed to the inclusion of cobalt ions and creation of defect levels in the bandgap, which is confirmed by UV analysis. Photoluminescence spectra show defects-free nature of synthesized nanoparticles. The functional groups and chemical interaction were determined by FTIR spectra. The photodegradation of MB dye with Co-doped CdS is more efficient under visible light compared to pure CdS. The 15 mol% Co-doped CdS acts as an efficient photocatalyst. The presence of Co2+ generated electron and holes and prolonged the recombination rate by introducing the temporary trapping sites, which essentially causes to improve the photocatalytic efficiency of the synthesized samples. The possible photocatalytic mechanism by Co doping is also discussed in detail.

Keywords

CdS Co doping Methylene blue Optical property Visible light Catalyst 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

References

  1. 1.
    H.M. Gibbs, G. Khitrova, in Semiconductor Nanocrystals for Non-Linear Optical Devices, In Non-Linear Photoionics, ed. by H. Gibbs, G. Khitrova, N. Peyghambarian (Springer, Berlin, 1990)Google Scholar
  2. 2.
    S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, Cambridge, 1998)CrossRefGoogle Scholar
  3. 3.
    I. Ekimov, A.L. Efros, Phys. Status Solidi B 150, 627 (1988)CrossRefGoogle Scholar
  4. 4.
    L.E. Brus, Appl. Phys. A. 53, 465 (1991)CrossRefGoogle Scholar
  5. 5.
    D.H. Kim, D.J. Lee, N.M. Kim, S.J. Lee, T.W. Kang, Y.D. Woo, D.J. Fu, J. Appl. Phys. 101, 094111 (2007)CrossRefGoogle Scholar
  6. 6.
    K.W. Liu, J.Y. Zhang, D.Z. Shen, X.J. Wu, B.H. Li, B.S. Li, Y.M. Lu, X.W. Fan, Appl. Phys. Lett. 90, 092507 (2007)CrossRefGoogle Scholar
  7. 7.
    C.W. Na, D.S. Han, D.S. Kim, Y.J. Kang, J.Y. Lee, J. Park, D.K. Oh, K.S. Kim, D. Kim, J. Phys. Chem. B 110, 6699 (2006)CrossRefPubMedGoogle Scholar
  8. 8.
    M. Thambidurai, N. Muthukumarasamy, S. Agilan, N. Murugan, N. Sabari Arul, S. Vasantha, R. Balasundaraprabhu, Solid State Sci. 12, 1554 (2010)CrossRefGoogle Scholar
  9. 9.
    A.R. Chauhan, R. Kumar, P. Chaudhary, Res. Chem. Intermed. 39, 645 (2013)CrossRefGoogle Scholar
  10. 10.
    I.F. Ertis, Int. J. Chem. React. Eng. 15, 1 (2016)Google Scholar
  11. 11.
    A.M. Abdulkarem, E.M. Elssfah, N.N. Yan, G. Demissie, Y. Yu, J. Phys. Chem. Solids. 74, 647 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Tambidurai, N. Muthukumaraswamy, D. Velayuthapillai, S. Agilan, R. Balasundaraprabhu, Powder Technol. 217, 1 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Tambidurai, N. Muthukumaraswamy, D. Velayuthapillai, S. Agilan, R. Balasundaraprabhu, J. Electron. Mater. 41, 665 (2012)CrossRefGoogle Scholar
  14. 14.
    L. Saravanan, A. Pandurangan, R. Jayavel, J. Nanopart. Res. 13, 1621–1628 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Tingtinghu, S. Zhang, G. Wang, S. Cui, Sun, Cryst. Engg. Comm. 13, 5646 (2011)CrossRefGoogle Scholar
  16. 16.
    M.B. Leena, K. Raji, Int. J. Adv. Eng. Res. Dev. 4, 1 (2017)Google Scholar
  17. 17.
    M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, J. Mater. Sci. Mater. Electron. 25, 730 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Madhan, M. Parthibavarman, P. Rajkumar, M. Sangeetha, J. Mater. Sci. Mater. Electron. 26, 6823 (2015)CrossRefGoogle Scholar
  19. 19.
    R. Gao, L. Wang, Y. Geng, B. Ma, Y. Zhu, H. Dong, Y. Qiu, J. Phys. Chem. C 115, 17986 (2011)CrossRefGoogle Scholar
  20. 20.
    P. Koidl, Phys. Rev. B. 15, 2493 (1977)CrossRefGoogle Scholar
  21. 21.
    M. Parthibavarman, B. Renganathan, D. Sastikumar, Curr. Appl. Phys. 13, 1537 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Kumar, Z. Jindal, N. Kumari, N.K. Verma, J. Nanopart. Res. 13, 5465 (2011)CrossRefGoogle Scholar
  23. 23.
    N.V. Hullavarad, S.S. Hullavarad, J. Vac. Sci Technol. A. 26, 1050 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Lazell, P. O’Brien, J. Mater. Chem. 9, 1381 (1999)CrossRefGoogle Scholar
  25. 25.
    M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, J. Mater. Sci. Mater. Electron. 29, 2341 (2018)CrossRefGoogle Scholar
  26. 26.
    K. Hu, X. Hu, Y. Xu, J. Sun, J. Mater. Sci. 45, 2640 (2010)CrossRefGoogle Scholar
  27. 27.
    L. Yuan, M.-Q. Yang, Y.-J. Xu, Nanoscale. 6, 6335 (2014)CrossRefPubMedGoogle Scholar
  28. 28.
    N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev. 115, 10307 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    Y.-S. Xie, L. Yuan, N. Zhang, Y.-J. Xu, Appl. Catal. B 238, 19 (2018)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsPSG College of Arts and ScienceCoimbatoreIndia

Personalised recommendations