Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 201–207 | Cite as

Poly(ionic liquids)/reduced graphene oxide miniemulsion polymers as effective support for immobilization of Ag nanoparticles and its amperometric sensing of l-cysteine

  • Yi Li
  • Ruixiao Liu
  • Qi WangEmail author
  • Qianlin Tang
  • Fei Liu
  • Jianping Jia
Original Paper
  • 22 Downloads

Abstract

A multi-layered catalyst based on poly [1-vinyl-3-ethylimidazolium bis(trifluoromethanesulfonyl)amide][Veim] [TFSA] and reduced graphene oxide (rGO), with high loading capacity for immobilization of silver nanoparticles was prepared. Poly(ionic liquids) (PIL):rGO nanocomposite was prepared through a miniemulsion polymerization process. Functionalization of rGO with PIL avoids metal leaching because the PIL–rGO nanocomposite provides amount of specific binding sites to anchor and grow silver nanoparticles on rGO surface. A non-enzymatic l-cysteine sensor was constructed based on the resultant nanohybrid for the first time. The modified sensor presents attractive analytical features such as super electrocatalytic activity, remarkably low detection limit (6 nM, S/N = 3), wide determination range (0.1–500 µM) and excellent selectivity.

Keywords

Poly(ionic liquids) Reduced graphene oxide Silver nanoparticles l-cysteine 

Notes

Acknowledgements

The research described in this paper was supported by National Natural Science Foundation of China (Grant no. 51702250).

Supplementary material

13738_2018_1497_MOESM1_ESM.doc (488 kb)
Supplementary material 1 (DOC 487 KB)

References

  1. 1.
    L. Wang, S. Tricard, P. Yue, J. Zhao, J. Fang, W. Shen, Biosens. Bioelectron. 77, 1112 (2016)CrossRefGoogle Scholar
  2. 2.
    S.A.M. Fathi, M.R. Yaftian, A. Kargari, D. Matt, J. Iran. Chem. Soc. 9, 783 (2012)CrossRefGoogle Scholar
  3. 3.
    M.-Y. Jia, L.-Y. Niu, Y. Zhang, Q.-Z. Yang, C.-H. Tung, Y.-F. Guan, L. Feng, ACS Appl. Mater. Interfaces. 7, 5907 (2015)CrossRefGoogle Scholar
  4. 4.
    C.-T. Hou, S.-Q. Fan, Q.-L. Lang, A.-H. Liu, Anal. Chem. 87, 3382 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Mazloum-Ardakani, Z. Taleat, H. Beitollahi, H. Naeimi, J. Iran. Chem. Soc. 7, 251 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Zhou, J. Ding, L.-P. Guo, Q.-K. Shang, Anal. Chem. 79, 5328 (2007)CrossRefGoogle Scholar
  7. 7.
    H. Karimi-Maleh, F. Tahernejad-Javazmi, A.A. Ensafi, R. Moradi, S. Mallakpour, H. Beitollahi, Biosens. Bioelectron. 60, 1 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Karimi-Maleh, P. Biparva, M. Hatami, Biosens. Bioelectron. 48, 270 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Jafari, J. Tashkhourian, G. Absalan, J. Iran. Chem. Soc. 14, 1253 (2017)CrossRefGoogle Scholar
  10. 10.
    L. Irannejad, S.J. Ahmadi, S. Sadjadi, M. Shamsipur, J. Iran. Chem. Soc. 15, 111 (2018)CrossRefGoogle Scholar
  11. 11.
    Y.-P. Wen, W. Wen, X.-H. Zhang, S.-F. Wang, Biosens. Bioelectron. 79, 894 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Pourjavadi, N. Safaie, S.H. Hosseini, J. Ind. Eng. Chem. 38, 82 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Amajjahe, H. Ritter, Macromol. Rapid Commun. 30, 94 (2009)CrossRefGoogle Scholar
  14. 14.
    T.Y. Kim, H.W. Lee, J.E. Kim, K.S. Suh, ACS Nano 4, 1612 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Wu, X. Feng, S. Zhou, H. Shi, H. Wu, S. Zhao, Microchim. Acta 180, 1325 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Amajjahe, H. Ritter, Macromolecules 41, 3250 (2008)CrossRefGoogle Scholar
  17. 17.
    H. Mao, J.-C. Liang, H.-F. Zhang, Q. Pei, D.-L. Liu, S.-Y. Wu, Y. Zhang, X.-M. Song, Biosens. Bioelectron. 70, 289 (2015)CrossRefGoogle Scholar
  18. 18.
    P.B. Zetterlund, Y. Saka, M. Okubo, Macromol. Chem. Phys. 210, 140 (2009)Google Scholar
  19. 19.
    K.Y. Van-Berkel, C.J. Hawker, J. Polym. Sci. Part A Polym. Chem. 48, 1594 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Tokuda, S.C. Thickett, H. Minami, P.B. Zetterlund, Macromolecules 49, 1222 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Baghayeri, H. Veisi, S. Farhadi, H. Beitollahi, B. Maleki, J. Iran. Chem. Soc. 15, 1015 (2018)CrossRefGoogle Scholar
  22. 22.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  23. 23.
    H.R. Zare, F. Jahangiri-Dehaghani, Z. Shekari, A. Benvidi, Appl. Sur. Sci. 375, 169 (2016)CrossRefGoogle Scholar
  24. 24.
    Q. Wang, Y. Yun, Microchim. Acta 180, 261 (2014)CrossRefGoogle Scholar
  25. 25.
    Z.-P. Li, J.-Q. Wang, L.-Y. Niu, J.-F. Sun, P.-W. Gong, W. Hong, L.-M. Ma, S.-R. Yang, J. Power Sour. 245, 224 (2014)CrossRefGoogle Scholar
  26. 26.
    Q. Wang, Q. Tang, Microchim. Acta 182, 671 (2015)CrossRefGoogle Scholar
  27. 27.
    H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A.R. Fakhari, Biosens. Bioelectron. 42, 426 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Keyvanfard, R. Salmani-Mobarakeh, H. Karimi-Maleh, K. Alizad, Chin. J. Catal. 35, 1166 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Murugavelu, B. Karthikeyan, Superlattice. Microst. 75, 916 (2014)CrossRefGoogle Scholar
  30. 30.
    A.A. Ensafi, S. Dadkhah-Tehrani, H. Karimi-Maleh, Anal. Sci. 27, 409 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Razmi, H. Heidari, Anal. Biochem. 388, 15 (2009)CrossRefGoogle Scholar
  32. 32.
    X.J. Wang, C.N. Luo, L.L. Li, H.M. Duan, J. Electroanal. Chem. 757, 100 (2015)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.School of Advanced Materials and NanotechnologyXidian UniversityXi’anPeople’s Republic of China
  2. 2.Xi’an Centre for Disease Control and PreventionXi’anPeople’s Republic of China
  3. 3.Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical ChemistryNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations