Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 169–182 | Cite as

Chromone Schiff base complexes: synthesis, structural elucidation, molecular modeling, antitumor, antimicrobial, and DNA studies of Co(II), Ni(II), and Cu(II) complexes

  • Mohamed GaberEmail author
  • Nadia El-Wakiel
  • Kamal El-Baradie
  • Sara Hafez
Original Paper


A new Schiff base, namely 3-{(5-mercapto-1,3,4-thiadiazol-2-ylimino) methyl}-4H-chromen-4-one, and its complexes of divalent Co, Ni, and Cu ions have been synthesized. Elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, and spectral techniques (X-ray powder diffraction, IR, EI-mass, 1H NMR, 13C NMR, UV–Vis, and ESR spectral studies) have been employed for structure elucidation of the target complexes. The spectral and analytical data revealed that the Schiff base acts as monobasic tetradentate ligand via deprotonated SH, oxygen atom of carbonyl group, and azomethine nitrogen atom for Ni2+ and Cu2+ complexes; bidentate via oxygen atom of carbonyl group and azomethine nitrogen atom for Co2+ complex. Molecular modeling calculations confirm the structural geometry of the complexes. The complexes were assayed for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the target compounds is evaluated against human liver carcinoma (HEPG2) cell. These compounds exhibited weak activities against the tested HEPG2 cell lines. The interaction of the investigated materials with calf-thymus DNA was also studied.


Chromone Thiadiazole Schiff base complexes Molecular modeling Antimicrobial Antitumor DNA binding 



Financial support from Faculty of Science, Tanta University, Tanta, Egypt is gratefully acknowledged.

Supplementary material

13738_2018_1494_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 2930 KB)


  1. 1.
    G.W. Kabalka, A.R. Mereddy, Microwave-assisted synthesis of functionalized flavones and chromones. Tetrahedron Lett 46, 6315–6317 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Martens, A. Methofer, Flavones and flavone synthases. Phytochemistry 66, 2399–2407 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Kirkiacharian, D. Thuy, S. Sicsic, R. Bakhchinian, R. Kurkjian, T. Tonnaire, Structure–activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. II Farmaco 57, 703–708 (2002)CrossRefGoogle Scholar
  4. 4.
    G. Singh, R. Singh, N. Girdhar, M. Ishar, A versatile route to 2-alkyl-/aryl-amino-3-formyl- and hetero-annelated-chromones, through a facile nucleophilic substitution at C2 in 2-(N-methylanilino)-3-formylchromones. Tetrahedron 58, 2471–2480 (2002)CrossRefGoogle Scholar
  5. 5.
    J. Modranka, E. Nawrot, J. Graczyk, J.N. Modranka, E. Nawrot, J. Graczyk, In vivo antitumor, in vitro antibacterial activity and alkylating properties of phosphoro-hydrazine derivatives of coumarin and chromone. Eur. J. Med. Chem. 41, 1301–1309 (2006)CrossRefGoogle Scholar
  6. 6.
    B. Wang. Z. Yang, M. Lü, J. Hai, Q. Wang, Z. Chen, Synthesis, characterization, cytotoxic activity and DNA binding Ni(II) complex with the 6-hydroxy chromone-3-carbaldehyde thiosemicarbazone. J. Organomet. Chem. 694, 4069–4075 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Li, Z. Yang, Z. Liao, Z. Han, Z. Liu, Synthesis, crystal structure, DNA binding properties and antioxidant activities of transition metal complexes with 3- carbaldehyde-chromone semicarbazone. Inorg. Chem. Commun. 13, 1213–1216 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Rosu, E. Pahontu, C. Maxim, R. Georgescu, N. Stanica, G. Almajan, A. Gulea, Synthesis, characterization and antibacterial activity of some new complexes of Cu(II), Ni(II), VO(II), Mn(II) with Schiff base derived from 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one. Polyhedron 29, 757–766 (2010)CrossRefGoogle Scholar
  9. 9.
    K. Khan, N. Ambreen, U. Mughal, S. Jalil, S. Perveen, M. Choudhary, 3-Formylchromones: potential antiinflammatory agents. Eur. J. Med. Chem. 45, 4058–4064 (2010)CrossRefGoogle Scholar
  10. 10.
    F. Arjmand, F. Sayeed, M. Muddassir, Synthesis of new chiral heterocyclic Schiff base modulated Cu(II)/Zn(II) complexes: their comparative binding studies with CT-DNA, mononucleotides and cleavage activity. J. Photochem. Photobiol. B Biol. 103, 166–179 (2011)CrossRefGoogle Scholar
  11. 11.
    P. Kavitha, M. Saritha, K. Reddy, Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases. Spectrochim. Acta A 102, 159–168 (2013)CrossRefGoogle Scholar
  12. 12.
    W. Zhu, C. Chen, C. Sun, S. Xu, C. Wu, F. Lei, H. Xia, Q. Tu, P. Zheng, Design synthesis and docking studies of novel thienopyrimidine derivatives bearing chromone moiety as mTOR/PI3Kα inhibitors. Eur. J. Med. Chem. 93, 64–73 (2015)CrossRefGoogle Scholar
  13. 13.
    R.A. Ammar, A. Alaghaz, M.E. Zayed, L. Al-Bedair, Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of O2N type tridentate chromone-2-carboxaldehyde Schiff’s base ligand. J. Mol. Struct. 1141, 368–381 (2017)CrossRefGoogle Scholar
  14. 14.
    I.N. Booysen, M.B. Ismail, M.P. Akerman, Coordination behavior of chromone Schiff bases towards the [ReVO]3+ and [ReI(CO)3]+ cores. J. Coord. Chem. 66, 4371–4386 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Saif, H.F. El-Shafiy, M.M. Mashaly, M.F. Eid, R. Fouad, Synthesis, characterization, and antioxidant/cytotoxic activity of new chromone Schiff base nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II). J. Mol. Struct. 1118, 75–82 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Kavitha, M. Saritha, K. Laxma Reddy, Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases. Spectrochim. Acta Part A 102, 159–168 (2013)CrossRefGoogle Scholar
  17. 17.
    S.A. Patil, S.N. Unki, A.D. Kulkarni, V.H. Naik, P.S. Badami, Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies. Spectrochim. Acta A 79, 1128–1136 (2011)CrossRefGoogle Scholar
  18. 18.
    K.M. Raj, B. Mruthyunjayaswamy, Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties. J. Mol. Struct. 1074, 572–582 (2014)CrossRefGoogle Scholar
  19. 19.
    S.A. Patil, S.N. Unki, A.D. Kulkarni, V.H. Naik, P.S. Badami, Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases. J. Mol. Struct. 985, 330–338 (2011)CrossRefGoogle Scholar
  20. 20.
    A.A. Abou-Hussein, W. Linert, Synthesis, spectroscopic studies and inhibitory activity against bacteria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand. Spectrochim. Acta A 141, 223–232 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Taher, H. Georgey, H. El-Subbagh, Novel 1,3,4-heterodiazole analogues: synthesis and in-vitro antitumor activity. Eur. J. Med. Chem. 47, 445–451 (2012)CrossRefGoogle Scholar
  22. 22.
    T. Plech, M. Wujec, U. Kosikowska, A. Malm, B. Kapron, Synthesis, antitumor activity and molecular docking study of novel sulfonamide-Schiff’s bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Eur. J. Med. Chem. 47, 572–580 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Pang, P. Kabara, D. Crouch, W. Duffy, M. Hceney, I. McCulloch, S. Coles, P. Horton, M. Hursthous, Structural and electronic effects of 1,3,4-thiadiazole units incorporated into polythiophene chains. Macromolecules 40, 6585–6593 (2007)CrossRefGoogle Scholar
  24. 24.
    H. Tian, Z. Yu, A. Hagfeldt, L. Kloo, L. Su, Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. J. Am. Chem. Soc. 133, 9413–9422 (2011)CrossRefGoogle Scholar
  25. 25.
    D. Kimmel, G. LeBlanc, M. Meschievitz, D. Cliffel, Electrochemical sensors and biosensors. Anal. Chem. 84, 685–707 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Singh, O. Pandey, S. Sengupta, Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2- Hydroxyl-acetophenone/indoline-2,3-dione. Spectrochim. Acta A 113, 393–399 (2013)CrossRefGoogle Scholar
  27. 27.
    F. Arnesano, G. Natile, Coord. Chem. Rev. 253, 2070 (2009)CrossRefGoogle Scholar
  28. 28.
    M.B. Halli, R.B. Sumathi, Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base. J. Mol. Struct. 1022, 130–138 (2012)CrossRefGoogle Scholar
  29. 29.
    G. Sathyaraj, T. Weyhermuller, B. Unni Nair, Synthesis, characterization and DNA binding studies of new ruthenium(II)bisterpyridine complexes. Eur. J. Med. Chem. 45, 284–291 (2010)CrossRefGoogle Scholar
  30. 30.
    K.W. Kohn, D.N.A. Beyond, Cross-Linking, History and prospects of DNA-targeted cancer treatment—fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 56, 5533–5546 (1996)Google Scholar
  31. 31.
    Y. Li, Y. Wu, J. Zhao, P. Yang, DNA-binding and cleavage studies of novel binuclear copper(II) complex with 1,1′-dimethyl-2,2′-biimidazole ligand. J. Inorg. Biochem. 101, 283–290 (2007)CrossRefGoogle Scholar
  32. 32.
    X. Wang, H. Chao, H. Li, X. Hong, X. Li, Synthesis, crystal structure and DNA cleavage activities of copper(II) complexes with asymmetric tridentate ligands. J. Inorg. Biochem. 98, 423–429 (2004)CrossRefGoogle Scholar
  33. 33.
    J. Liu, T. Zhang, T. Lu, L. Qu, J. Liangnian, DNA-binding and cleavage studies of macrocyclic copper(II) complexes J. Inorg. Biochem. 91, 269–276 (2002)CrossRefGoogle Scholar
  34. 34.
    V.G. Vaidyanathen, B.U. Nair, Oxidative cleavage of DNA by tridentate copper (II) complex. J. Inorg. Biochem. 93, 271–276 (2003)CrossRefGoogle Scholar
  35. 35.
    P.R. Reddy, K.S. Rao, B. Satyanarayana, Synthesis and DNA cleavage properties of ternary Cu(II) complexes containing histamine and amino acids. Tetrahedron Lett. 47, 7311–7315 (2006)CrossRefGoogle Scholar
  36. 36.
    F. Arjmand, F. Sayeed, M. Muddassir, Synthesis of new chiral heterocyclic Schiff base modulated Cu(II)/Zn(II) complexes: their comparative binding studies with CT-DNA, mononucleotides and cleavage activity. J. Photochem. Photobiol. B 103, 166–179 (2011)CrossRefGoogle Scholar
  37. 37.
    Y. Li, Z. Yang, Rare earth complexes with 3-carbaldehyde chromone-(benzoyl) hydrazone: synthesis, characterization, DNA binding studies and antioxidant activity. J. Fluoresc. 20, 329–342 (2010)CrossRefGoogle Scholar
  38. 38.
    B. Wang, Z. Yang, Synthesis, characterization, DNA-binding properties of the Ln(III) complexes with 6-hydroxy chromone-3-carbaldehyde-(4′-hydroxy) benzoyl hydrazone. J. Fluoresc. 18, 547–553 (2008)CrossRefGoogle Scholar
  39. 39.
    D. Qin, Z. Yang, B. Wang, Spectra and DNA-binding affinities of copper(II), nickel(II) complexes with a novel glycine Schiff base derived from chromone. Spectrochim. Acta A 68, 912–917 (2007)CrossRefGoogle Scholar
  40. 40.
    HyperChem, Release 8.03 for Windows, Molecular Modeling System (Hypercube Inc., Gainesville, 2007)Google Scholar
  41. 41.
    R.E. Cooper, in Analytical Microbiology, ed. by F.W. Kavanageh, vols. 1 and 11 (Academic Press, New York, 1972)Google Scholar
  42. 42.
    P. Skehan, R. Storeng, New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107–1112 (1990)CrossRefGoogle Scholar
  43. 43.
    J. Chaires, N. Dattagupta, D. Crothers, Biochemistry, 21, 3933 (1982)CrossRefGoogle Scholar
  44. 44.
    G. Cohen, H. Eisenberg, Biopolymers 8, 45 (1969)CrossRefGoogle Scholar
  45. 45.
    W.J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971)CrossRefGoogle Scholar
  46. 46.
    A.B.P. Lever, Crystal field spectra, in Inorganic Electronic Spectroscopy, 2nd edn. (Elsevier, Amsterdam, 1984)Google Scholar
  47. 47.
    S. Chandra, A. Harma, Nickel(II) and copper(II) complexes with Schiff base ligand 2,6-diacetylpyridine bis(carbohydrazone): synthesis and IR, mass, 1H NMR, electronic and EPR spectral studies. Spectrochim. Acta A 72, 851–857 (2009)CrossRefGoogle Scholar
  48. 48.
    A. Earnshaw, The Introduction to Magnetochemistry (Academic Press, London, 1980), p. 80Google Scholar
  49. 49.
    N. El-Wakiel, Y. El-Sayed, M. Gaber, Synthesis, characterization, and theoretical studies of Co(II) and Cu(II) complexes of 1-[(5-mercapto-[1,3,4]thiadiazol-2-ylimino)-methyl]-naphthalen-2-ol and its interaction with Cu nanoparticles. J. Mol. Struct. 1001, 1–11 (2011)CrossRefGoogle Scholar
  50. 50.
    R. Neiman, D. Kivelson, ESR studies on the bonding in copper complexes. J. Chem. Phys. 35, 149–155 (1961)CrossRefGoogle Scholar
  51. 51.
    B.J. Hathaway, A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion. Struct. Bond. 57, 55–118 (1984)CrossRefGoogle Scholar
  52. 52.
    M. Gaber, Y.S. El-Sayed, K.Y. El-Baradie, R.M. Fahmy, Complex formation, thermal behavior and stability competition between Cu(II) ion and Cu0 nanoparticles with some new azo dyes. Antioxidant and in vitro cytotoxic activity. Spectrochim. Acta A 107, 359–370 (2013)CrossRefGoogle Scholar
  53. 53.
    N. Raman, A. Kulandaisamy, Synthesis, structural characterisation and electrochemical and antibacterial studies of Schiff base copper complexes. Transit. Met. Chem. 29, 129–135 (2004)CrossRefGoogle Scholar
  54. 54.
    C. Arrano, C. Nunn, R. Quan, J. Bonadies, V. Pecoraro, Monomeric and dimeric vanadium(IV) and -(V) complexes of N-(hydroxyalkyl)salicylideneamines: structures, magnetochemistry and reactivity. Inorg. Chem. 29, 944–951 (1990)CrossRefGoogle Scholar
  55. 55.
    M.S. Masoud, A.A. Soayed, A.E. Ali, Complexing properties of nucleic-acid constituents adenine and guanine complexes. Spectrochim. Acta A 60, 1907–1915 (2004)CrossRefGoogle Scholar
  56. 56.
    B.J. Hathaway, The evidence for “out-of-the-plane” bonding in axial complexes of the copper(II) ion. Struct. Bond. 14, 49–67 (1973)CrossRefGoogle Scholar
  57. 57.
    M. Gaber, Y.S. El-Sayed, K. El-Baradie, R.M. Fahmy, Cu(II) complexes of monobasic bi- or tridentate (NO, NNO) azo dye ligands: synthesis, characterization, and interaction with Cu-nanoparticles. J. Mol. Struct. 1032, 185–194 (2013)CrossRefGoogle Scholar
  58. 58.
    R. Parr, R. Pearsone, R. Parr, R. Pearsone, Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983)CrossRefGoogle Scholar
  59. 59.
    G. Speie, J. Csihony, A. Whalen, C. Pie-Pont, Studies on aerobic reactions of ammonia/3,5-di-tert-butylcatechol Schiff-base condensation products with copper, copper(I), and copper(II). Strong copper(II)–radical ferromagnetic exchange and observations on a unique N–N coupling reaction. Inorg. Chem. 35, 3519–3524 (1996)CrossRefGoogle Scholar
  60. 60.
    R. Parr, L. Szentpály, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
  61. 61.
    P. Geerlings, F. De Proft, W. Langenaeker, Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003)CrossRefGoogle Scholar
  62. 62.
    P.K. Chattaraj, S. Giri, Stability, reactivity, and aromaticity of compounds of a multivalent superatom. J. Phys. Chem. A 111, 11116–11121 (2007)CrossRefGoogle Scholar
  63. 63.
    S. Sagdinc, B. Koksoy, F. Kandeirli, S.H. Bayari, Theoretical and spectroscopic studies of 5-fluoro-isatin-3-(N-benzylthiosemicarbazone) and its zinc(II) complex. J. Mol. Struct. 917, 63–70 (2009)CrossRefGoogle Scholar
  64. 64.
    S.W. Xia, X. Xu, Y.L. Sun, Y.L. Fan, Y.H. Fan, C.F. Bi, D.M. Zhang, L.R. Yang, Density functional theory study on La complex with Schiff-base as building block. Chin. J. Struct. Chem. 25, 197–203 (2006)Google Scholar
  65. 65.
    G. Gao, C. Liang, Electrochemical and DFT studies of β-amino-alcohols as corrosion inhibitors for brass. Electrochim. Acta 52, 4554–4559 (2007)CrossRefGoogle Scholar
  66. 66.
    M. Carcelli, P. Mazza, C. Pelizzi, G. Pelizzi, F. Zani, Antimicrobial and genotoxic activity of 2,6-diacetylpyridine bis(acylhydrazones) and their complexes with some first transition series metal ions. X-ray crystal structure of a dinuclear copper(II) complex. J. Inorg. Biochem. 57, 43–62 (1995)CrossRefGoogle Scholar
  67. 67.
    M. Aljahdali, A. EL-Sherif, Synthesis, characterization, molecular modeling and biological activity of mixed ligand complexes of Cu(II), Ni(II) and Co(II) based on 1,10-phenanthroline and novel thiosemicarbazone. Inorg. Chim. Acta 407, 58–68 (2013)CrossRefGoogle Scholar
  68. 68.
    A. Koch, Bacterial wall as target for attack past, present, and future research. Clin. Microbiol. Rev. 16, 673–687 (2003)CrossRefGoogle Scholar
  69. 69.
    W.T. Sheir, Mammalian Cell Culture on Sa Day: A Lab Manual of Low Cost Methods (University of the Philippines, Los Banos, 1991), p. 64Google Scholar
  70. 70.
    N. Tian, Z. Zhou, S. Sun, Y. Ding, L. Zhong, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007)CrossRefGoogle Scholar
  71. 71.
    S. Tabassum, A. Asim, F. Arjamand, M. Afzal, V. Bagchi, Synthesis and characterization of copper(II) and zinc(II)-based potential chemotherapeutic compounds: their biological evaluation viz. DNA binding profile, cleavage and antimicrobial activity. Eur. J. Med. Chem. 58, 308–316 (2012)CrossRefGoogle Scholar
  72. 72.
    P. Kumar, I. Gorai, M. Santra, B. Mondal, D. Manna, DNA binding, nuclease activity and cytotoxicity studies of Cu(II) complexes of tridentate ligands. Dalton Trans. 41, 7573–7581 (2012)CrossRefGoogle Scholar
  73. 73.
    C. Jiang, Syntheses, characterization and DNA-binding study of chiral complexes ∆∆- and ΛΛ-[Ru(bpy)2(bdptb)Ru(bpy)2]4+. J. Inorg. Biochem. 98, 497–501 (2004)CrossRefGoogle Scholar
  74. 74.
    P.K. Sasmal, A.K. Patra, A.R. Chakravarty, Synthesis, structure, DNA binding and DNA cleavage activity of oxovanadium(IV) N-salicylidene-S-methyldithiocarbazate complexes of phenanthroline bases. J. Inorg. Biochem. 102, 1463–1472 (2008)CrossRefGoogle Scholar
  75. 75.
    S. Mukherjee, S. Chowdhury, A. Ghorai, U. Ghosh, H. Stoeckli-Evans, Synthesis, structure, interaction with DNA and cytotoxicity of a luminescent copper(II) complex with a hydrazone ligand. Polyhedron 51, 228–234 (2013)CrossRefGoogle Scholar
  76. 76.
    M. Gaber, H. El-Ghamry, S.K. Fathalla, Ni(II), Pd(II) and Pt(II) complexes of (1H-1,2,4-triazole-3 ylimino)methyl]naphthalene-2-ol. Structural, spectroscopic, biological, cytotoxicity, antioxidant and DNA binding. Spectrochim. Acta A 139, 396–404 (2015)CrossRefGoogle Scholar
  77. 77.
    L. Jin, P. Yang, Synthesis and DNA binding studies of cobalt (III) mixed-polypyridyl complex. J. Inorg. Biochem. 68, 79–83 (1997)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  • Mohamed Gaber
    • 1
    Email author
  • Nadia El-Wakiel
    • 1
  • Kamal El-Baradie
    • 1
  • Sara Hafez
    • 1
  1. 1.Chemistry Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations