Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 83–91 | Cite as

A novel rhodol-based colorimetric and ratiometric fluorescent probe for selective detection of sulfite in living cells

  • Hongmin LvEmail author
  • Zhaoyu Wang
  • Jing Lv
  • Nan Gao
  • Xiangfeng Kong
  • Yingying Zhang
Original Paper


A new type of colorimetric and ratiometric fluorescent probe 1 for sulfite is developed based on a rhodol-benzothiazole platform. Ratiometric sensing of sulfite is achieved by utilizing the nucleophilic addition of sulfite to the vinyl bridge (‒C=C‒) to block the π-conjugated system of the probe, which results in significant blueshifts in the absorption and emission spectra of the sensing system (from 590 to 530 nm in the absorption spectra and from 650 to 555 nm in the emission spectra). This probe exhibits the desired selectivity for sulfite over other anions and biothiols. The fluorescence intensity ratio at 555 nm and 650 nm (I555/I650) increases linearly with the sulfite concentration in the range of 0.5‒15 µM with a detection limit of 0.28 µM. A cytotoxicity assay indicates that probe 1 has low cytotoxicity and good cell membrane permeability and can be used for sulfite detection in practical samples and for ratiometric fluorescent imaging of sulfite in living HepG2 cells.


Ratiometric fluorescent probe Sulfite Rhodol Nucleophilic addition reaction 



This project is supported by National Key Research and Development Program of China (No. 2016YFC1400800) and the National Natural Science Foundation of China (Grant nos. 41606111, 41406104).


  1. 1.
    R.F. McFeeters, J. Food Prot. 61, 885 (1998)Google Scholar
  2. 2.
    L. Migliore, F. Coppede, Mutat. Res. 674, 73 (2009)Google Scholar
  3. 3.
    N. Sang, Y. Yun, G.Y. Yao, H.Y. Li, L. Guo, G.K. Li, J. Toxicol. Sci. 124, 400 (2011)Google Scholar
  4. 4.
    G.K. Li, N. Sang, Ecotoxicol. Environ. Saf. 72, 236 (2009)Google Scholar
  5. 5.
    E.N. Schachter, T.J. Witek, G.J. Beck, H.R. Hosein, G. Colice, B.P. Leaderer, Environ. Health Glob. 39, 34 (1984)Google Scholar
  6. 6.
    N. Sang, Y. Yun, H.Y. Li, L. Hou, M. Han, G.K. Li, J. Toxicol. Sci. 114, 226 (2010)Google Scholar
  7. 7.
    M. Koch, R. Köppen, D. Siegel, A. Witt, I. Nehls, J. Agric. Food Chem. 58, 9463 (2010)Google Scholar
  8. 8.
    G.J. Mohr, Chem. Commun. 2646 (2002)Google Scholar
  9. 9.
    K.Y. Chen, Y. Guo, Z.H. Lu, B.Q. Yang, Z. Shi, Chin. J. Chem. 28, 55 (2010)Google Scholar
  10. 10.
    X.F. Yang, M.L. Zhao, G. Wang, Sens. Actuators B Chem. 152, 8 (2011)Google Scholar
  11. 11.
    C.M. Yu, M. Luo, F. Zeng, S.Z. Wu, Anal. Methods 4, 2638 (2012)Google Scholar
  12. 12.
    Y.Q. Sun, P. Wang, J. Liu, J. Zhang, W. Guo, Analyst 137, 3430 (2012)Google Scholar
  13. 13.
    Y.T. Yang, F.J. Huo, J.J. Zhang, Z.H. Xie, J.B. Chao, C.X. Yin, H.B. Tong, D.S. Liu, S. Jin, F.Q. Cheng, X.X. Yan, Sens. Actuators B Chem. 166, 665 (2012)Google Scholar
  14. 14.
    X.H. Cheng, H.Z. Jia, J.G. Feng, Z. Li, J. Mater. Chem. B 1, 4110 (2013)Google Scholar
  15. 15.
    A.K. Liu, R.X. Ji, S.L. Shen, X.Q. Cao, Y.Q. Ge, New J. Chem. 41, 10096 (2017)Google Scholar
  16. 16.
    L.J. Zhang, Z.Y. Wang, X.J. Cao, J.T. Liu, B.X. Zhao, Sens. Actuators B Chem. 236, 741 (2016)Google Scholar
  17. 17.
    M.G. Choi, J. Hwang, S. Eor, S.K. Chang, Org. Lett. 12, 5624 (2010)Google Scholar
  18. 18.
    X.F. Gu, C.H. Liu, Y.C. Zhu, Y.Z. Zhu, J. Agric. Food Chem. 59, 11935 (2011)Google Scholar
  19. 19.
    S. Chen, P. Hou, J.X. Wang, X.Z. Song, RSC Adv. 2, 10869 (2012)Google Scholar
  20. 20.
    L. Wang, W.X. Li, W.J. Zhi, D.D. Ye, Y. Wang, L. Ni, X. Bao, Dyes Pigment 147, 357 (2017)Google Scholar
  21. 21.
    H.Y. Zhang, S.H. Xue, G.Q. Feng, Sens. Actuators B Chem. 231, 752 (2016)Google Scholar
  22. 22.
    C.C. Wang, S. Feng, L.Y. Wu, S.Y. Yan, C. Zhong, P. Guo, R. Huang, X.C. Weng, X. Zhou, Sens. Actuators B Chem. 190, 792 (2014)Google Scholar
  23. 23.
    Y.M. Sun, C. Zhong, R. Gong, H.L. Mu, E.Q. Fu, J. Org. Chem. 74, 7943 (2009)Google Scholar
  24. 24.
    Y.Q. Sun, J. Liu, J.Y. Zhang, T. Yang, W. Guo, Chem. Commun. 49, 2637 (2013)Google Scholar
  25. 25.
    M.Y. Wu, T. He, K. Li, M.B. Wu, Z. Huang, X.Q. Yu, Analyst 138, 3018 (2013)Google Scholar
  26. 26.
    M.Y. Wu, K. Li, C.Y. Li, J.T. Hou, X.Q. Yu, Chem. Commun. 50, 183 (2014)Google Scholar
  27. 27.
    H.Y. Tian, J.H. Qian, Q. Sun, H.Y. Bai, W.B. Zhang, Anal. Chim. Acta 788, 165 (2013)Google Scholar
  28. 28.
    W. Xu, C.L. Teoh, J.J. Peng, D.D. Su, L. Yuan, Y.T. Chang, Biomaterials 56, 1 (2015)Google Scholar
  29. 29.
    L. Tan, W.Y. Lin, S.S. Zhu, L. Yuan, K.B. Zheng, Org. Biomol. Chem. 12, 4637 (2014)Google Scholar
  30. 30.
    K.Q. Xiang, S.Z. Chang, J.J. Feng, C.J. Li, W. Ming, Z.Y. Liu, Y.C. Liu, B.Z. Tian, J.L. Zhang, Dyes Pigment 134, 190 (2016)Google Scholar
  31. 31.
    Y.H. Chen, X. Wang, X.F. Yang, Y.G. Zhong, Z. Li, H. Li, Sens. Actuators B Chem. 206, 268 (2015)Google Scholar
  32. 32.
    T. Peng, D. Yang, Org. Lett. 12, 496 (2010)Google Scholar
  33. 33.
    X.M. Li, C.F. Ding, B.Q. Tian, Q. Liu, S.S. Zhang, H. Xu, P.K. Ouyang, Chem. Pap. 60, 220 (2006)Google Scholar
  34. 34.
    J. Liu, Y.Q. Sun, J. Zhang, T. Yang, J. Cao, L. Zhang, W. Guo, Chem. Eur. J. 19, 4717 (2013)Google Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Institute of Oceanographic InstrumentationQilu University of Technology (Shandong Academy of Sciences)JinanChina
  2. 2.Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment TechnologyQingdaoChina
  3. 3.National Engineering and Technological Research Center of Marine Monitoring EquipmentQingdaoChina

Personalised recommendations