Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 73–81 | Cite as

Magnetic solid-phase extraction with copper ferrite nanoparticles for the separation and preconcentration of ultra-trace amounts of tellurium (IV) ion in aqueous samples

  • Sanaz Narimani-Sabegh
  • Ebrahim NoroozianEmail author
Original Paper
  • 18 Downloads

Abstract

A selective, simple and rapid magnetic solid-phase extraction was developed using copper ferrite (CuFe2O4) as an efficient sorbent for the separation and preconcentration of tellurium (IV) ion prior to its determination by electrothermal atomic absorption spectrometry. In this method, only 5 mg of the sorbent was needed to obtain a satisfactory extraction recovery. The CuFe2O4 was synthesized by means of a simple coprecipitation method and subsequently characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The factors affecting the separation and preconcentration of tellurium (IV) ions including, the type of desorption solvent, desorption solvent concentration and volume, desorption temperature and time, pH, amount of sorbent, extraction temperature and time were investigated and optimized. The effects of interfering ions on the extraction of Te (IV) ions were also investigated. Under the optimized conditions, the method exhibited a linear dynamic range of 0.04–0.5 µg L−1 with good linearity (r2 = 0.9982). The limit of detection and sorption capacity were found to be 0.012 µg L−1 and 89.0 mg g−1, respectively. Enrichment factor was 223. The intraday, interday, and batch-to-batch relative standard deviations were found to be 3.1, 4.4, and 6.0% for 0.25 µg L−1 concentration. Finally, the proposed analytical procedure was successfully applied to monitor tellurium (IV) ions in some aqueous samples, with relative recoveries of > 96%.

Keywords

Tellurium (IV) ion Copper ferrite Magnetic nanoparticles Magnetic solid-phase extraction Electrothermal atomic absorption spectrometry 

Supplementary material

13738_2018_1482_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 39 KB)

References

  1. 1.
    L.A. Ba, M. Döring, V. Jamier, C. Jacob, Tellurium: an element with great biological potency and potential. Org. Biomol. Chem. 8(19), 4203–4216 (2010)Google Scholar
  2. 2.
    L. Gerhardsson, in Handbook on the Toxicology of Metals, ed. by G.F. Nordberg, B.A. Fowler, M. Nordberg, L. Friberg, 3rd edn. (Academic Press, Burlington, 2007), p. 815Google Scholar
  3. 3.
    H.A. Schroeder, J. Buckman, J.J. Balassa, Abnormal trace elements in man: tellurium. J. Chron. Dis. 20(3), 147–161 (1967)Google Scholar
  4. 4.
    A. Naumov, Selenium and tellurium: state of the markets, the crisis, and its consequences. Metallurgist 54(3–4), 197–200 (2010)Google Scholar
  5. 5.
    T. Sadeh, in Chemistry of Organic Selenium and Tellurium Compunds, vol. 2, ed. by S. Patai (Wiley, Chichester, 1987), p. 367Google Scholar
  6. 6.
    A. Larner, Alzheimer’s disease, Kuf’s disease, tellurium and selenium. Med. Hypotheses 47(2), 73–75 (1996)Google Scholar
  7. 7.
    Z. Chai, H. Zhu, Introduction to trace element chemistry (Chinese Atomic Energy Press, Beijing, 1994), pp. 201–204Google Scholar
  8. 8.
    T.G. Chasteen, R. Bentley, Biomethylation of selenium and tellurium: microorganisms and plants. Chem. Rev. 103(1), 1–26 (2003)Google Scholar
  9. 9.
    M. Kaplan, S. Cerutti, S. Moyano, R. Olsina, L. Martinez, J. Gásquez, On-line preconcentration system by coprecipitation with lanthanum hydroxide using packed-bed filter for the determination of tellurium in water by ICP-OES with USN. Inst. Sci. Technol. 32(4), 423–431 (2004)Google Scholar
  10. 10.
    A. Matsumoto, T. Shiozaki, T. Nakahara, Simultaneous determination of bismuth and tellurium in steels by high power nitrogen microwave induced plasma atomic emission spectrometry coupled with the hydride generation technique. Anal. Bioanal. Chem. 379(1), 90–95 (2004)Google Scholar
  11. 11.
    A. Matsumoto, A. Oheda, T. Nakahara, in Determination of Tellurium in Steels by High Power Nitrogen Microwave Induced Plasma Atomic Emission Spectrometry Coupled with Hydride Generation Technique, Analytical Sciences/Supplements Proceedings of IUPAC International Congress on Analytical Sciences 2001 (ICAS 2001), The Japan Society for Analytical Chemistry, (2002) pp. i963–i966Google Scholar
  12. 12.
    C. Yu, Q. Cai, Z.-X. Guo, Z. Yang, S.B. Khoo, Simultaneous speciation of inorganic selenium and tellurium by inductively coupled plasma mass spectrometry following selective solid-phase extraction separation. J. Anal. Atom. Spectrom. 19(3), 410–413 (2004)Google Scholar
  13. 13.
    K. Urbánková, M. Moos, J. Machát, L. Sommer, Simultaneous determination of inorganic arsenic, antimony, selenium and tellurium by ICP-MS in environmental waters using SPE preconcentration on modified silica. Int. J. Environ Anal. Chem. 91(11), 1077–1087 (2011)Google Scholar
  14. 14.
    C. Huang, B. Hu, Speciation of inorganic tellurium from seawater by ICP-MS following magnetic SPE separation and preconcentration. J. Sep. Sci. 31(4), 760–767 (2008)Google Scholar
  15. 15.
    L. Zhang, M. Zhang, X. Guo, X. Liu, P. Kang, X. Chen, Sorption characteristics and separation of tellurium ions from aqueous solutions using nano-TiO2. Talanta 83(2), 344–350 (2010)Google Scholar
  16. 16.
    H. Khajehsharifi, M. Mousavi, J. Ghasemi, M. Shamsipur, Kinetic spectrophotometric method for simultaneous determination of selenium and tellurium using partial least squares calibration. Anal. Chim. Acta 512(2), 369–373 (2004)Google Scholar
  17. 17.
    E. Ródenas-Torralba, P. Cava-Montesinos, Á Morales-Rubio, M.L. Cervera, M. de la Guardia, Multicommutation as an environmentally friendly analytical tool in the hydride generation atomic fluorescence determination of tellurium in milk. Anal. Bioanal. Chem. 379(1), 83–89 (2004)Google Scholar
  18. 18.
    A. Körez, A.E. Eroğlu, M. Volkan, O.Y. Ataman, Speciation and preconcentration of inorganic tellurium from waters using a mercaptosilica microcolumn and determination by hydride generation atomic absorption spectrometry. J. Anal. Atom. Spectrom. 15(12), 1599–1605 (2000)Google Scholar
  19. 19.
    M. Xi, R. Liu, P. Wu, K. Xu, X. Hou, Y. Lv, Atomic absorption spectrometric determination of trace tellurium after hydride trapping on platinum-coated tungsten coil. Microchem. J. 95(2), 320–325 (2010)Google Scholar
  20. 20.
    H. Matusiewicz, M. Krawczyk, Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry. Spectrochim. Acta Part B 62(3), 309–316 (2007)Google Scholar
  21. 21.
    N.M. Najafi, H. Tavakoli, R. Alizadeh, S. Seidi, Speciation and determination of ultra trace amounts of inorganic tellurium in environmental water samples by dispersive liquid–liquid microextraction and electrothermal atomic absorption spectrometry. Anal. Chim. Acta 670(1–2), 18–23 (2010)Google Scholar
  22. 22.
    E. Ghasemi, N.M. Najafi, F. Raofie, A. Ghassempour, Simultaneous speciation and preconcentration of ultra traces of inorganic tellurium and selenium in environmental samples by hollow fiber liquid phase microextraction prior to electrothermal atomic absorption spectroscopy determination. J. Hazard. Mater. 181(1–3), 491–496 (2010)Google Scholar
  23. 23.
    E. Ghasemi, N.M. Najafi, S. Seidi, F. Raofie, A. Ghassempour, Speciation and determination of trace inorganic tellurium in environmental samples by electrodeposition-electrothermal atomic absorption spectroscopy. J. Anal. Atom. Spectrom. 24(10), 1446–1451 (2009)Google Scholar
  24. 24.
    P. Sharma, A. Agarwal, Voltammetric ultra trace determination of tellurium. Anal. Lett. 39(7), 1421–1427 (2006)Google Scholar
  25. 25.
    P. Zong, Y. Nagaosa, Cathodic stripping voltammetric determination of tellurium (IV) with in situ plated bismuth-film electrode. Anal. Lett. 42(13), 1997–2010 (2009)Google Scholar
  26. 26.
    J. Pedro, J. Stripekis, A. Bonivardi, M. Tudino, Determination of tellurium at ultra-trace levels in drinking water by on-line solid phase extraction coupled to graphite furnace atomic absorption spectrometer. Spectrochim. Acta, Part B 63(1), 86–91 (2008)Google Scholar
  27. 27.
    I.S. Balogh, V. Andruch, Comparative spectrophotometric study of the complexation and extraction of tellurium with various halide ions and N, N′-di (acetoxyethyl) indocarbocyanine. Anal. Chim. Acta 386(1–2), 161–167 (1999)Google Scholar
  28. 28.
    C.-H. Chung, E. Iwamoto, M. Yamamoto, Y. Yamamoto, Selective determination of arsenic (III, V), antimony (III, V), selenium (IV, VI) and tellurium (IV, VI) by extraction and graphite furnace atomic absorption spectrometry. Spectrochim. Acta Part B 39(2–3), 459–466 (1984)Google Scholar
  29. 29.
    S. Garboś, E. Bulska, A. Hulanicki, Z. Fijałek, K. Sołtyk, Determination of total antimony and antimony (V) by inductively coupled plasma mass spectrometry after selective separation of antimony (III) by solvent extraction with N-benzoyl-N-phenylhydroxylamine. Spectrochim Acta Part B 55(7), 795–802 (2000)Google Scholar
  30. 30.
    M.A. Karimi, A. Hatefi-Mehrjardi, S.Z. Mohammadi, A. Mohadesi, M. Mazloum-Ardakani, M.R.H. Nezhad, A.A. Kabir, Solid phase extraction of trace amounts of Pb (II) in opium, heroin, lipstick, plants and water samples using modified magnetite nanoparticles prior to its atomic absorption determination. J. Iran. Chem. Soc. 9(2), 171–180 (2012)Google Scholar
  31. 31.
    H. Eskandari, A. Bezaatpour, F. Eslami, Naked magnetite nanoparticles for both clean-up and solid-phase extraction-trace determination of mercury. J. Iran. Chem. Soc. 14(2), 457–469 (2017)Google Scholar
  32. 32.
    S. Seidi, M. Majd, Polyaniline-functionalized magnetic graphene oxide for dispersive solid-phase extraction of Cr (VI) from environmental waters followed by graphite furnace atomic absorption spectrometry. J. Iran. Chem. Soc. 14(6), 1195–1206 (2017)Google Scholar
  33. 33.
    P. Robinson, P. Dunnill, M. Lilly, The properties of magnetic supports in relation to immobilized enzyme reactors. Biotechnol. Bioeng. 15(3), 603–606 (1973)Google Scholar
  34. 34.
    M. Šafaříková, I. Šafařík, Magnetic solid-phase extraction. J. Magn. Magn. Mater. 194(1), 108–112 (1999)Google Scholar
  35. 35.
    M.H. Mashhadizadeh, M. Amoli-Diva, M.R. Shapouri, H. Afruzi, Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles. Food Chem 151, 300–305 (2014)Google Scholar
  36. 36.
    C. Huang, B. Hu, Silica-coated magnetic nanoparticles modified with γ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 63(3), 437–444 (2008)Google Scholar
  37. 37.
    A. Subha, M.G. Shalini, S.C. Sahoo, in Magnetic Studies of CuFe 2 O 4 Nanoparticles Prepared by Co-precipitation Method, AIP Conference Proceedings (AIP Publishing, 2016), p. 020416Google Scholar
  38. 38.
    J. Zhang, M. Li, Y. Li, Z. Li, F. Wang, Q. Li, W. Zhou, R. Lu, H. Gao, Application of ionic-liquid-supported magnetic dispersive solid-phase microextraction for the determination of acaricides in fruit juice samples. J. Sep. Sci. 36(19), 3249–3255 (2013)Google Scholar
  39. 39.
    A.A. Ensafi, S. Rabiei, B. Rezaei, A.R. Allafchian, Magnetic solid-phase extraction to preconcentrate ultra trace amounts of lead (ii) using modified-carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles. Anal. Methods 5(16), 3903–3908 (2013)Google Scholar
  40. 40.
    K. Maaz, A. Mumtaz, S. Hasanain, A. Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007)Google Scholar
  41. 41.
    N.K. Thanh, N.P. Duong, D.Q. Hung, T.T. Loan, T.D. Hien, Structural and magnetic characterization of copper ferrites prepared by using spray co-precipitation method. J. Nanosci. Nanotechnol. 16(8), 7949–7954 (2016)Google Scholar
  42. 42.
    V. Stefanova, D. Georgieva, V. Kmetov, I. Roman, A. Canals, Unmodified manganese ferrite nanoparticles as a new sorbent for solid-phase extraction of trace metal–APDC complexes followed by inductively coupled plasma mass spectrometry analysis. J. Anal. At. Spectrom. 27(10), 1743–1752 (2012)Google Scholar
  43. 43.
    Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 321(9), 1251–1255 (2009)Google Scholar
  44. 44.
    M. Gholinejad, B. Karimi, F. Mansouri, Synthesis and characterization of magnetic copper ferrite nanoparticles and their catalytic performance in one-pot odorless carbon-sulfur bond formation reactions. J. Mol. Catal. A Chem. 386, 20–27 (2014)Google Scholar
  45. 45.
    F. Talebzadeh, R. Zandipak, S. Sobhanardakani, CeO2 nanoparticles supported on CuFe2O4 nanofibers as novel adsorbent for removal of Pb (II), Ni (II), and V (V) ions from petrochemical wastewater. Desal. Water Treat 57(58), 28363–28377 (2016)Google Scholar
  46. 46.
    M. Bouroushian, Electrochemistry of the Chalcogens, Electrochemistry of Metal Chalcogenides, (Springer, Berlin, 2010), pp. 57–75Google Scholar
  47. 47.
    E. Rudnik, P. Biskup, Electrochemical behavior of tellurium in acidic nitrate solutions. Metall. Foundry Eng. 40, 15–31 (2014)Google Scholar
  48. 48.
    Y.-J. Tu, C.-F. You, C.-K. Chang, S.-L. Wang, T.-S. Chan, Arsenate adsorption from water using a novel fabricated copper ferrite. Chem. Eng. J. 198, 440–448 (2012)Google Scholar
  49. 49.
    Y.-J. Tu, C.-F. You, C.-K. Chang, S.-L. Wang, T.-S. Chan, Adsorption behavior of As (III) onto a copper ferrite generated from printed circuit board industry. Chem. Eng. J. 225, 433–439 (2013)Google Scholar
  50. 50.
    P.V. Grundler, J. Brugger, B.E. Etschmann, L. Helm, W. Liu, P.G. Spry, Y. Tian, D. Testemale, A. Pring, Speciation of aqueous tellurium (IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochim. Cosmochim. Acta 120, 298–325 (2013)Google Scholar
  51. 51.
    J. Pedro, J. Stripekis, A. Bonivardi, M. Tudino, Thermal stabilization of tellurium in mineral acids solutions: use of permanent modifiers for its determination in sulfur by GFAAS. Talanta 69(1), 199–203 (2006)Google Scholar
  52. 52.
    L. Luo, Y. Tang, M. Xi, W. Li, Y. Lv, K. Xu, Hydride generation induced chemiluminescence for the determination of tellurium (IV). Microchem. J. 98(1), 51–55 (2011)Google Scholar
  53. 53.
    P. Wu, Y. Zhang, R. Liu, Y. Lv, X. Hou, Comparison of tungsten coil electrothermal vaporization and thermospray sample introduction methods for flame furnace atomic absorption spectrometry. Talanta 77(5), 1778–1782 (2009)Google Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of ChemistryShahid Bahonar University of KermanKermanIran

Personalised recommendations