Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 57–64 | Cite as

Vanadium (IV) complexes with Schiff base ligands derived from 2,3-diaminopyridine as catalyst for the oxidation of sulfides to sulfoxides with H2O2

  • Abedien ZabardastiEmail author
  • Sayed Asad Shangaie
Original Paper


Sulfoxides are substances used in the synthesis of valuable complexes and as drugs in medicine. Sulfides were selectively oxidized to the corresponding sulfoxides in proper yields with (H2O2) hydrogen peroxide applying a vanadium (IV) Schiff base complex in the role of a catalyst in glacial acetic acid in the role of solvent beneath mild conditions. For the conversion of sulfides to sulfoxides of various catalysts are applied. It must be noted that in our previous article, the vanadyl complexes (VOY1) synthesized were applied as a catalyst in the epoxidation of styrene (Zabardasti and Shangaie, J Iran Chem Soc 13:1875–1886, 2016) but in the new work, vanadium (IV) complexes with Schiff base ligands derived from 2,3-diaminopyridine were used to as catalyst for the oxidation of sulfides to sulfoxides with H2O2. To the most of our information, there is not any literature description on the selective oxidation of sulfides to sulfoxides by means of a vanadium (IV) Schiff base complex with N, O donor ligand derived from 2,3-diaminopyridine catalyst beneath these conditions. Dimethyl sulfide was chosen as a pattern substrate for optimization experiments. Oxidation of sulfides was functioned at 25 °C temperature in the attendance of a catalytic quantity of the vanadium (IV) complex or (VOY1) utilizing 20% H2O2 in the role of the oxidant, Scheme 1 and glacial acetic acid in the role of the solvent.


Sulfide Hydrogen peroxide Selective oxidation Catalyst VO2+ Schiff base complex 2,3-Diaminopyridine Sulfoxide 



We are appreciative for the commercial assistance of Kurdistan University of the Islamic Republic of Iran.


  1. 1.
    P.A. Vigato, S. Tamburini, Coord. Chem. Rev. 248, 1717–2128 (2004)CrossRefGoogle Scholar
  2. 2.
    N.E. Borisova, M.D. Reshetova, Y.A. Ustynyuk, Chem. Rev. 107, 46–79 (2007)CrossRefGoogle Scholar
  3. 3.
    D.M. Boghaei, S. Mohebi, Tetrahedron 58, 5357 (2002)CrossRefGoogle Scholar
  4. 4.
    S. Mohebi, D.M. Boghaei, A.H. Sarvestani, Appl. Catal. A: Gen. 278, 263 (2005)CrossRefGoogle Scholar
  5. 5.
    H. Schiff, Annalen 131, 118 (1864)CrossRefGoogle Scholar
  6. 6.
    S.K.C. Lai, K. Lam, K.M. Chu, B.C. Wong, W.M. Hui, W.H. Hu, G.K. Lau, W.M. Wong, M.F. Yuen, A.O. Chan, C.L. Lai, J.N. Wong, Eng. J. Med. 346, 2033–2038 (2002)CrossRefGoogle Scholar
  7. 7.
    M. Sovova, P. Sova, Ceska Slov Farm 52, 82–87 (2003)Google Scholar
  8. 8.
    B. Kotelanski, R.J. Grozmann, J.N.C. Cohn, Pharmacol. Ther. 14, 427–433 (1973)CrossRefGoogle Scholar
  9. 9.
    R. Schmied, G.X. Wang, M. Korth, Circ. Res. 68, 597–604 (1991)CrossRefGoogle Scholar
  10. 10.
    A.V. Nieves, A.E. Lang, Clin. Neuropharmacol. 25, 111–114 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Padmanabhan, R.C. Lavin, G.J. Durant, Tetrahedron Asymmetry 11, 3455–4357 (2000)CrossRefGoogle Scholar
  12. 12.
    K. Kaczorowska, Z. Kolarska, K. Mitka, P. Kowalski, Tetrahedron 61, 8315–8327 (2005)CrossRefGoogle Scholar
  13. 13.
    S.H. Wang, B.S. Mandimutsira, R. Todd, B. Ramdhanie, J.P. Fox, D.P. Goldberg, J. Am. Chem. Soc. 126, 18–19 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Al-Hashimi, G. Roy, A.C. Sullivan, J.R.H. Wilson, Tetrahedron Lett. 46, 4365–4368 (2005)CrossRefGoogle Scholar
  15. 15.
    N.S. Venkataramanan, G. Kuppuraj, S. Rajagopal, Coord. Chem. Rev. 249, 1249–1268 (2005)CrossRefGoogle Scholar
  16. 16.
    G.D. Du, J.H. Espenson, Inorg. Chem. 44, 2465–2471 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Velusamy, A.V. Kumar, R. Saini, T. Punniyamurthy, Tetrahedron Lett. 46, 3819–3822 (2005)CrossRefGoogle Scholar
  18. 18.
    G.B. Shul’pin, G. Suss-Fink, L.S. Shul’pina, J. Mol. Catal. A: Chem. 170, 17–34 (2001)CrossRefGoogle Scholar
  19. 19.
    A. Shabani, D.G. Lee, Tetrahedron Lett. 42, 5833–5836 (2001)CrossRefGoogle Scholar
  20. 20.
    J.E. Barker, T. Ren, Tetrahedron Lett. 45, 4681–4683 (2004)CrossRefGoogle Scholar
  21. 21.
    V. Mirkhani, S. Tangestaninejad, M. Moghadam, I. Mohammadpoor-Baltork, H. Kargar, J. Mol. Catal. A: Chem. 242, 251–255 (2005)CrossRefGoogle Scholar
  22. 22.
    H. Golchoubian, A. Nemati Kharat, Pol. J. Chem. 79, 825–830 (2005)Google Scholar
  23. 23.
    H.R. Mardani, H. Golchoubian, Tetrahedron Lett. 47, 2349–2352 (2006)CrossRefGoogle Scholar
  24. 24.
    R. Karmaker, C.R. Choudhury, G. Bravic, J.P. Sutter, S. Mitra, Polyhedron 23, 949–954 (2004)CrossRefGoogle Scholar
  25. 25.
    SMART version 5.630 and SAINT-plus version 6.45 (2003) Bruker-Nonius Analytical X-ray Systems Inc, Madison, WI, USAGoogle Scholar
  26. 26.
    G.M. Sheldrick (1997) SADABS, Program for area detector absorptionGoogle Scholar
  27. 27.
    A. Zabardasti, S.A. Shangaie, J. Iran. Chem. Soc. 13, 1875–1886 (2016)CrossRefGoogle Scholar
  28. 28.
    M.R. Mauryaa, A.K. Chandrakar, S. Chand, J. Mol. Catal. A: Chem. 274, 192–201 (2007)CrossRefGoogle Scholar
  29. 29.
    R. Kathrin-Marya (2002) Sulfones and sulfoxides, Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, New YorkGoogle Scholar
  30. 30.
    H. Golchoubian, F. Hosseinpoor, Molecules 12(3), 304–311 (2007)CrossRefGoogle Scholar
  31. 31.
    G.B. Shul’pin, Chimie 6, 163–178 (2003)CrossRefGoogle Scholar
  32. 32.
    V. Mirkhani, S. Tangestaninejad, M. Moghadam, M. Moghbel, Bioorg. Med. Chem. 12, 4673–4677 (2004)CrossRefGoogle Scholar
  33. 33.
    J.T. Groves, J. Porphyr. Phthalocyanines 4, 350–352 (2000)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of ChemistryLorestan UniversityKhoramabadIran

Personalised recommendations