Journal of the Iranian Chemical Society

, Volume 16, Issue 1, pp 45–55 | Cite as

Synthesis and characterization of porous clay heterostructure intercalated with CuO nanoparticles as a visible light-driven photocatalyst

  • Sh. SohrabnezhadEmail author
  • M. Esfandiyari Takas
Original Paper


This study reports on the preparation and characterization of porous clay heterostructure (PCH) as a high-surface area support for CuO nanoparticles (NPs)-based photocatalyst for the preferential oxidation of methylene blue under visible light in the absence of H2O2. CuO NPs were incorporated in PCH by thermal decomposition method. The new photocatalyst was characterized by DRS, XRD, FT-IR, nitrogen adsorption–desorption measurements and TEM. The results revealed that PCH acts as a host material for spherical CuO NPs with particles size less than 10 nm. The powder X-ray diffraction indicated that PCH contained both MMT clay and MCM-41 and MCM-41 located at the interlayers space of MMT clay. The DRS demonstrated the presence of CuO, Cu2O and Cu NPs in PCH. The synthesized material (CuO–PCH) was a visible light-driven photocatalyst for degradation of MB dye. The photocatalyst demonstrated 94% removal efficiency for MB dye under visible light after 60 min. Kinetics studies showed that the reaction rate constants of CuO–PCH were approximately 1.8, 2.4 and 3.4 times higher than the apparent reaction rate constant of CuO–MMT, CuO–MCM-41 and CuO, respectively. The mechanism of separation of the photogenerated electrons and holes of the CuO–PCH nanocomposite was discussed.


Visible light-driven Porous clay heterostructures CuO–PCH Transmission electron microscopy Decomposition method 


  1. 1.
    J. Xie, H. Wang, M. Duan, L. Zhang, Synthesis and photocatalysis properties of ZnO structures with different. Appl. Surf. Sci. 257, 6358–6363 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Jafarzadeh, Sh. Sohrabnezhad, M.A. Zanjanchi, M. Arvand, Synthesis and characterization of thiol-functionalized MCM-41 nanofibers and its application as photocatalyst. Microporous Mesoporous Mater. 236, 109–119 (2016)CrossRefGoogle Scholar
  3. 3.
    Sh. Sohrabnezhad, A. Seifi, The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity. Appl. Surf. Sci. 386, 33–40 (2016)CrossRefGoogle Scholar
  4. 4.
    S.K. Rajabi, Sh Sohrabnezhad, S. Ghafourian, Fabrication of Fe3O4@CuO core-shell from MOF based materials and its antibacterial activity. J. Solid State Chem. 244, 160–163 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Zhu, H. Fan, J. Sun, S. Ali, Anion-exchange precipitation synthesis of alfa-Ag2WO4/Zn-Cr layered double hydroxides composite with enhanced visible-light-driven photocatalytic activity. Sep. Purif. Technol. 120, 134–140 (2013)CrossRefGoogle Scholar
  6. 6.
    F. Petronella, A. Truppi, C. Ingrosso, T. Placido, M. Striccoli, M.L. Curri, A. Agostiano, R. Comparelli, Nanocomposite materials for photocatalytic degradation of pollutants. Catal. Today 281, 29–37 (2017)CrossRefGoogle Scholar
  7. 7.
    R. Ameta, R.K. Malkani, A comparative study of photocatalytic activity of some coloured semiconducting oxides. Iran. J. Chem. Chem. Eng. 29, 43–48 (2010)Google Scholar
  8. 8.
    M. Yin, F. Wang, H. Fan, L. Xu, S. Liu, Heteroj unction CuO@ZnO microcubes for superior p-type gas sensor application. J. Alloys Compd. 672, 374–379 (2016)CrossRefGoogle Scholar
  9. 9.
    R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO into methanol under visible light irradiation. Appl. Catal. B: Environ. 181, 35 2–362 (2016)CrossRefGoogle Scholar
  10. 10.
    K. Mageshwari, D. Nataraj, T. Pal, R. Sathyamoorthy, J. Park, Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method. J. Alloys Compd. 625, 362–370 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Fang, Y. Xing, A. Bonakdarpour, S. Zhang, D.P. Wilkinson, Hierarchical CuO-TiO2 hollow microspheres for highly efficient photo-driven reduction of CO2 to CH, ACS Sustainable. Chem. Eng. 3, 2381–2388 (2015)Google Scholar
  12. 12.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. Mc Cullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)CrossRefGoogle Scholar
  13. 13.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 359, 710–712 (1992)CrossRefGoogle Scholar
  14. 14.
    J. Choma, M. Jaroniec, W. Burakiewicz-Mortka, M. Kloske, Critical appraisal of classical methods for determination of mesopore size distributions of MCM-41 materials. Appl. Surf. Sci. 196, 216–223 (2002)CrossRefGoogle Scholar
  15. 15.
    T.J. Pinnavaia, Porous clay heterostructures prepared by gallery templated synthesis, US patent 1998. (US 5834391)Google Scholar
  16. 16.
    A. Galarneau, A. Barodawalla, T.J. Pinnavaia, A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374, 529–531 (1995)CrossRefGoogle Scholar
  17. 17.
    S. Sohrabnezhad, A. Valipour, Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state Reaction. Spectrochim. Acta A 114, 298–302 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Sohrabnezhad, A. Pourahmad, T. Salavatiyan, CuO-MMT nanocomposite: effective photocatalyst for the discoloration of methylene blue in the absence of H2O2. Appl. Phys. A 122, 111–123 (2016)CrossRefGoogle Scholar
  19. 19.
    J.E. Aguiar, J.A. Cecilia, P.A.S. Tavares, D.C.S. Azevedo, E. Rodríguez Castellón, S.M.P. Lucena, I.J. Silva Junior, Adsorption study of reactive dyes onto porous clay heterostructures. Appl. Clay Sci 135, 35–44 (2017)CrossRefGoogle Scholar
  20. 20.
    J.A. Cecilia, A. Arango-Díaz, F. Franco, J. Jiménez-Jiménez, L. Storaro, E. Moretti, E. Rodríguez-Castellón, CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream. Catal. Today 253, 126–136 (2015)CrossRefGoogle Scholar
  21. 21.
    L. Yang, D. Chu, L. Wang, CuO core-shell nanostructures: precursor-mediated fabrication and visible-light induced photocatalytic degradation of organic pollutants. Powder Technol. 287(3), 46–354 (2016)Google Scholar
  22. 22.
    R.M. Torres Sanchez, M. Genet, S. Yunes, X.V. Cong. AFQQI. C-95 Tandil, (2007)Google Scholar
  23. 23.
    G.W. Brindley, R.W. Hoffmann, Orientation and packing of aliphatic chain molecules on montmorillonite, clay organic studies IV. Clays Clay Miner. 9, 546–556 (1962)CrossRefGoogle Scholar
  24. 24.
    S. Xu, S.A. Boyd, Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir 11, 2508–2514 (1995)CrossRefGoogle Scholar
  25. 25.
    M. Kawano, M. Tomita, Dehydration and rehydration of saponite and vermiculite. Clays Clay Miner. 39, 174–183 (1991)CrossRefGoogle Scholar
  26. 26.
    M. Benjelloun, P. Cool, T. Linssen, E.F. Vansant, Acidic porous clay heterostructures: study of their cation exchange capacity. Microporous Mesoporous Mater. 49, 83–94 (2001)CrossRefGoogle Scholar
  27. 27.
    S.J. Greek, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic, London, 1982)Google Scholar
  28. 28.
    V.C. Farmer, J.D. Russell, Effects of particle size and structure on the vibrational frequencies of layer silicates. Spectrochim. Acta. A 22, 389–398 (1966)CrossRefGoogle Scholar
  29. 29.
    S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Facile synthesis of CuO nanomorphs and their morphology dependent sunlight driven photocatalytic properties, Chem. Eng. J. 204–206, 158–165 (2012)Google Scholar
  30. 30.
    M.S. Kumar, M. Schwidder, W. Grunet, A. Bruckner, On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach. J. Catal. 227, 384–397 (2004)CrossRefGoogle Scholar
  31. 31.
    M.S. Kumar, J. Perez-Ramirez, M.N. Debbagh, S. Smarsly, U. Bentrup, A. Bruckner, Evidence of the vital role of the pore network on various catalytic conversions of N2O over Fe-silicalite and Fe-SBA-15 with the same iron constitution. Appl. Catal. B 62, 244–254 (2006)CrossRefGoogle Scholar
  32. 32.
    A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation. Chem. Eng. J. 228, 631–641 (2013)CrossRefGoogle Scholar
  33. 33.
    A.A. Jalil, M.A.H. Satar, S. Triwahyono, H.D. Setiabudi, N.H.N. Kamarudin, N.F. Jaafar, N. Sapawe, R. Ahamad, Tailoring the current density to enhance photocatalytic activity of CuO/HY for decolorization of malachite green. J. Electroanal. Chem. 701, 50 (2013)CrossRefGoogle Scholar
  34. 34.
    P. Wang, X. Zheng, X. Wu, X. Wei, L. Zhou, Preparation and characterization of CuO nanoparticles encapsulated in mesoporous Silica. Microporous Mesoporous Mater. 149, 181–185 (2012)CrossRefGoogle Scholar
  35. 35.
    Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000)CrossRefGoogle Scholar
  36. 36.
    A. Riga, K. Soutsas, K. Ntampegliotis, V. Karayannis, G. Papapolymerou, Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination 211, 72 (2007)CrossRefGoogle Scholar
  37. 37.
    C.H. Chiou, C.Y. Wu, R.S. Juang, Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem. Eng. J. 139, 322 (2008)CrossRefGoogle Scholar
  38. 38.
    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, Ch Liu, Sh. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 60, 208–337 (2014)CrossRefGoogle Scholar
  39. 39.
    M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem. Mater 14, 2812–2816 (2002)CrossRefGoogle Scholar
  40. 40.
    Y.-F. Zhang, L.-G. Qiu, Y.-P. Yuan, Y.-J. Zhu, X. Jiang, J.-D. Xiao, Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Appl. Catal. B 144, 863–869 (2014)CrossRefGoogle Scholar
  41. 41.
    J. Ding, L. Liu, J. Xue, Zh Zhou, G. He, H. Chen, Low-temperature preparation of magnetically separable Fe3O4@CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light. J. Alloys Compd. 688, 649–656 (2016)CrossRefGoogle Scholar
  42. 42.
    L. Latifi, Sh Sohrabnezhad, M. Hadavi, Mesoporous silica as a support for poorly soluble drug: Influence of pH and amino group on the drug release. Microporous Mesoporous Mater. 250, 148–157 (2017)CrossRefGoogle Scholar
  43. 43.
    X. Zhang, Y.L. Chen, R.Sh. Liu, D.P. Tsai, Plasmonic photocatalysis. Rep. Prog.Phys. 76, 046401–046442 (2013)CrossRefGoogle Scholar
  44. 44.
    Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Appl. Surf. Sci. 332, 32–39 (2015)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of GuilanRashtIran

Personalised recommendations