Response surface methodology for modelling and determination of catechin in Pistachio green hull using surfactant-based dispersive liquid–liquid microextraction followed by UV–Vis spectrophotometry
- 50 Downloads
Abstract
A rapid and simple approach for the preconcentration and determination of catechin from pistachio green hull samples has been proposed by surfactant-assisted dispersive liquid–liquid microextraction followed by UV–Vis spectrophotometry (SADLLME/UV–Vis). This method involved the formation of a catechin complex with cetylpyridinium chloride (CPC) as cationic surfactant, and subsequently, DLLME was applied to extract the catechin–CPC complex into chloroform. Different parameters affected the extraction efficiency were optimized by central composite design (CCD) and response surface methodology (RSM). In optimum condition, the calibration curve was linear in the range of 0.4–5 µg mL− 1 of catechin with correlation coefficient of 0.9982. The relative standard deviation based on five replicated analyses of 1 µg mL− 1 catechin was 1.85%. The proposed method was successfully applied for preconcentration and determination of trace amounts of catechin in pistachio hull samples.
Keywords
Catechin Cetylpyridinium chloride Dispersive liquid–liquid microextraction UV–Vis spectrophotometryReferences
- 1.A. Agouni, A.H. Lagrue-Lak-Hal, H.A. Mostefai, A. Tesse, P. Mulder, P. Rouet, F. Desmoulin, C. Heymes, M.C. Martinez, R. Andriantsitohain, PLoS One. 4, 1 (2009)CrossRefGoogle Scholar
- 2.B. Shukitt-Hale, A. Carey, L. Simon, D.A. Mark, J.A. Joseph, Nutrition. 22, 295 (2006)CrossRefPubMedGoogle Scholar
- 3.A. Basu, E.A. Lucas, Nutr. Rev. 65, 361 (2007)CrossRefPubMedGoogle Scholar
- 4.C.Y. Chen, P.E. Milbury, K. Lapsley, J.B. Blumberg, J. Nutr. 135, 1366 (2005)CrossRefPubMedGoogle Scholar
- 5.K.J. Anderson, S.S. Teuber, A. Gobeille, P. Cremin, A.L. Waterhouse, F.M. Steinberg, J. Nutr. 131, 2837 (2001)CrossRefPubMedGoogle Scholar
- 6.P. Velayutham, A. Babu, D.D. Liu, Curr. Med. Chem. 15, 1840 (2008)CrossRefPubMedCentralGoogle Scholar
- 7.A.H. Goli, M. Barzegar, M.A. Sahari, Food Chem. 92, 521 (2005)CrossRefGoogle Scholar
- 8.A. Rajaei, M. Barzegar, A.M. Mobarez, M.A. Sahari, Z.H. Esfahani, Food Chem. Toxicol. 48, 107 (2010)CrossRefPubMedGoogle Scholar
- 9.D. Barreca, G. Lagana, U. Leuzzi, A. Smeriglio, D. Trombetta, E. Bellocco, Food Chem. 196, 493 (2016)CrossRefPubMedGoogle Scholar
- 10.F. Garavand, A. Madadlou, S. Moini, Int. J. Food Prop. 20, 19 (2017)CrossRefGoogle Scholar
- 11.E. Bellocco, D. Barreca, G. Lagana, A. Calderaro, Z.El Lekhlifi, S. Chebaibi, A. Smeriglio, D. Trombetta, J. Funct. Foods. 27, 376 (2016)CrossRefGoogle Scholar
- 12.M.H. Grace, D. Esposito, M.A. Timmers, J. Xiong, G. Yousef, S. Komarnytsky, M.A. Lila, Food Chem. 210, 85 (2016)CrossRefPubMedGoogle Scholar
- 13.E. de Rijke, P. Out, W.M. Niessen, F. Ariese, C. Gooijer, U.A. Brinkman, J. Chromatogr A. 1112, 31 (2006)CrossRefPubMedGoogle Scholar
- 14.X.L. Hu, J.Y. You, C.L. Bao, H. Zhang, X. Meng, T. Xiao, K. Zhang, Y. Wang, H. Wang, H. Zhang, A. Yu, Anal. Chim. Acta 610, 217 (2008)CrossRefPubMedGoogle Scholar
- 15.A. Meda, C.E. Lamien, M. Romito, J. Millogo, O.G. Nacoulma, Food Chem. 91, 571 (2005)CrossRefGoogle Scholar
- 16.L.A. Lemos da Silva, B. Ramos Pezzini, L. Soares, Pharmacogn Mag 11, 96 (2015)CrossRefGoogle Scholar
- 17.M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A. 1116, 1 (2006)CrossRefPubMedGoogle Scholar
- 18.M. Rahmani, M. Kaykhaii, E. Ghasemi, M. Tahernejad, J. Chromatogr. Sci. 53, 1210 (2016)CrossRefGoogle Scholar
- 19.M. Polo, M. Llompart, C. Garcia-Jares, R. Cela, J. Chromatogr. A. 1072, 63 (2005)CrossRefPubMedGoogle Scholar
- 20.C.L. Roriz, L. Barros, M.A. Prieto, P. Morales, I.C.F.R. Ferreira, Food Chem. 229, 223 (2017)CrossRefPubMedGoogle Scholar
- 21.A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, RSC Adv. 5, 18438 (2015)CrossRefGoogle Scholar
- 22.G.B. Celli, A. Ghanem, M.S.L. Brooks, Ultrason. Sonochem. 27, 449 (2015)CrossRefPubMedGoogle Scholar
- 23.M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Talanta. 76, 965 (2008)CrossRefPubMedGoogle Scholar
- 24.A. Tomaino, M. Martorana, T. Arcoraci, D. Monteleone, C. Giovinazzo, A. Saija, Biochimie 92, 1115 (2010)CrossRefPubMedGoogle Scholar
- 25.S.D. Brown, S.T. Sum, F. Despagne, Anal. Chem. 68, 21 (1996)CrossRefGoogle Scholar
- 26.P. Gemperline, Practical Guide to Chemometrics, 2nd edn. (CRC Press, Taylor & Francis Group, Boca Raton, Springer, 2006), p. 552CrossRefGoogle Scholar
- 27.D.D. Stephan, J. Werner, R.P. Yeater, Essential regression and experimental design for chemists and engineers, MS Excel Add-in Software Package (1998–2001)Google Scholar
- 28.L.V. Candioti, J.C. Robles, V.E. Mantovani, H.C. Goicoechea, Talanta. 69, 140 (2006)CrossRefPubMedGoogle Scholar
- 29.R.G. Brereton, Chemometrics, data analysis for the laboratory and chemical plant (John Wiley & Sons Ltd, Springer, England, 2003), p. 504Google Scholar
- 30.K. Shrivas, N.K. Jaiswal, Food Chem. 141, 2263 (2013)CrossRefPubMedGoogle Scholar
- 31.L.M. Magalhaes, M.I.G.S. Almeida, L. Barreiros, S. Reis, A.S. Marcela, Food Anal. Methods 5, 530 (2012)CrossRefGoogle Scholar
- 32.D. Marinova, F. Ribarova, M. Atanassova, J. Univ. Chem. Technol. Metallurgy 40, 255 (2005)Google Scholar
- 33.Y. Jaiswal, P. Tatke, S. Gabhe, A. Vaidya, Pol. J. Food Nutr. Sci. 63, 49 (2013)Google Scholar
- 34.W.E. Bronner, G.R. Beecher, J. Chromatogr A. 805, 137 (1998)CrossRefPubMedGoogle Scholar
- 35.N. Chaieb, M. Lopez-Mesas, J. Luis Gonzalez, M. Marsb, M. Valiente, Phytochem. Anal. 26, 346 (2015)CrossRefPubMedGoogle Scholar
- 36.P. Vinas, N. Campillo, N. Martinez-Castillo, M. Hernandez-Cordoba, J. Chromatogr A. 1216, 1279 (2009)CrossRefPubMedGoogle Scholar
- 37.P. Yang, H. Li, H. Wang, F. Han, S. Jing, C. Yuan, A. Guo, Y. Zhang, Z. Xu, Food Anal. Methods 10, 2383 (2017)CrossRefGoogle Scholar