A clean synthesis of 2,5-dihydro-1H-pyrrole-2-carboxylates under catalyst-free and solvent-free conditions: cytotoxicity and molecular docking studies
- 12 Downloads
Abstract
A concise, clean synthetic approach to access of 2,5-dihydro-1H-pyrrole-2-carboxylates by two-component condensation reaction of ethyl pyruvate and aniline derivatives under catalyst-free and solvent-free conditions is described. The advantages of this method are practical simplicity, catalyst-free and solvent-free conditions, high atom economy, short reaction times, and good yields of the products. The anticancer potential of synthesized compounds was evaluated against MCF7, MOLT-4 and HL-60 cells by using MTT assay. Among the tested synthesized 2,5-dihydro-1H-pyrrole-2-carboxylates (3a-h, 4a-d), compound 4d having sulfonamide moiety exhibited good cytotoxic activity against all tested cell lines and molecular docking studies also demonstrated that the results of the docking study are in reasonable agreement with cytotoxicity activities.
Graphical Abstract
Keywords
Clean synthesis 2,5-Dihydro-1H-pyrrole-2-carboxylates Ethyl pyruvate Catalyst-free Two-component reactions Cytotoxicity Molecular dockingNotes
Acknowledgements
We are thankful to Persian Gulf University Research Council for partial support of this work. Also, we are thankful to the School of Chemistry, Manchester University, for running NMRs.
References
- 1.P.J. Dunn, Chem. Soc. Rev. 41, 1452–1461 (2012)CrossRefGoogle Scholar
- 2.M.O. Simon, C.J. Li, Chem. Soc. Rev. 41, 1415 (2012)CrossRefGoogle Scholar
- 3.B.H. Rotstein, S. Zaretsky, V. Rai, A.K. Yudin, Chem. Rev. 114, 8323–8359 (2014)CrossRefGoogle Scholar
- 4.S. Yan, Y. Chen, L. Liu, N. He, J. Lin, Green Chem. 12, 2043 (2010)CrossRefGoogle Scholar
- 5.J. Feng, K. Ablajan, A. Sali, Tetrahedron 70, 484–489 (2014)CrossRefGoogle Scholar
- 6.K. Ablajan, L.J. Wang, Z. Maimaiti, Y.T. Liu, Monatsh. Chem. 145, 491 (2014)CrossRefGoogle Scholar
- 7.B. Li, M.P.A. Lyle, G. Chen, J. Li, K. Hu, L. Tang, M.A. Alaoui-Jamali, J. Webster, Bioorg. Med. Chem. 15, 4601 (2007)CrossRefGoogle Scholar
- 8.L. Zhang, Y. Tan, N.X. Wang, Q.Y. Wu, Z. Xi, G.F. Yang, Bioorg. Med. Chem. 18, 7948 (2010)CrossRefGoogle Scholar
- 9.K. Ma, P. Wang, W. Fu, X. Wan, L. Zhou, Y. Chu, D. Ye, Bioorg. Med. Chem. Lett. 21, 6724 (2011)CrossRefGoogle Scholar
- 10.V. Gein, N. Kasimova, M. Panina, E. Voronina, Pharm. Chem. J. 40, 410 (2006)CrossRefGoogle Scholar
- 11.H. He, H.Y. Yang, R. Bigelis, E.H. Solum, M. Greenstein, G.T. Carter, Tetrahedron Lett. 43, 1633 (2002)CrossRefGoogle Scholar
- 12.K.A. Evans, D. Chai, T.L. Graybill, G. Burton, R.T. Sarisky, J. Lin-Goerke, V.K. Johnston, R.A. Rivero, Bioorg. Med. Chem. Lett. 16, 2205 (2006)CrossRefGoogle Scholar
- 13.S.C.P. Lopes, Y.C. Blanco, G.Z. Justo, P.A. Nogueira, F.L.S. Rodrigues, U. Goelnitz, G. Wunderlich, G. Facchini, M. Brocchi, N. Duran, F.T.M. Costa, Antimicrob. Agents Chemother. 53, 2149 (2009)CrossRefGoogle Scholar
- 14.F. Palacios, J. Vicario, D. Aparicio, Eur. J. Org. Chem. 2006(12), 2669–2858 (2006)Google Scholar
- 15.Y.V. Tomilov, G.P. Okonnishnikova, E.V. Shulishov, V.A. Korolev, Russ. Chem. Bull. Int. Ed. 54, 1052 (2005)CrossRefGoogle Scholar
- 16.K. Niknam, S. Mojikhalifeh, Mol. Divers. 18, 111 (2014)CrossRefGoogle Scholar
- 17.P.S. Silaichev, V.O. Filimonov, P.A. Slepukhin, A.N. Maslivets, Molecules 17, 13787 (2012)CrossRefGoogle Scholar
- 18.V.O. Filimonov, P.S. Silaichev, M.I. Kodess, M.A. Ezhikova, A.N. Maslivets, Arkivoc 5, 259–265 (2015)Google Scholar
- 19.S.B. Mandal, B. Achar, Indian J. Chem. B 31, 357–358 (1992)Google Scholar
- 20.V.L. Gein, E.V. Shumilovskikh, E.V. Voronina, L.F. Gein, N.P. Khokhryakova, S.P. Tendryakova, N.G. Vyaznikova, Y.S. Andreichikov, Russ. J. Gen. Chem. 68, 1267–1270 (1998)Google Scholar
- 21.M. Akkurt, S.K. Mohamed, M.A.A. Elremaily, F. Santoyo-Gonzalez, M.R. Albayati, Acta Cryst. E69, o1757 (2013)Google Scholar
- 22.M. Akkurt, S.K. Mohamed, M.A.A. Elremaily, F. Santoyo-Gonzalez, M.R. Albayati, Acta Cryst. E69, o1761 (2013)Google Scholar
- 23.M.M. Ghorab, F.A. Ragab, H.I. Heiba, M.G. El-Gazzar, S.S. Zahran, Eur. J. Med. Chem. 92, 682 (2015)CrossRefGoogle Scholar
- 24.I.R. Greig, E. Coste, S.H. Ralston, R.J. van᾽t Hof, Bioorg. Med. Chem. Lett. 23, 816 (2013)CrossRefGoogle Scholar
- 25.M. Banerjee, A. Poddar, G. Mitra, A. Surolia, T. Owa, B. Bhattacharyya, J. Med. Chem. 48, 547 (2005)CrossRefGoogle Scholar
- 26.N. Boechat, L.C.S. Pinheiro, O.A. Santos-Filho, I.C. Silva, Molecules 16, 8083 (2011)CrossRefGoogle Scholar
- 27.E. Barresi, S. Salerno, A.M. Marini, S. Taliani, C.L. Motta, F. Simorini, F.D. Settimo, D. Vullo, C.T. Supuran, Bioorg. Med. Chem. 24, 921–927 (2016)CrossRefGoogle Scholar
- 28.C.T. Supuran, J. Enzyme Inhib. Med. Chem. 31, 345 (2016)CrossRefGoogle Scholar
- 29.J. Pan, J. Lau, F. Mesak, N. Hundal, M. Pourghiasian, Z. Liu, F. Benard, S. Dedhar, C.T. Supuran, K.S. Lin, J. Enzyme Inhib. Med. Chem. 29, 249 (2014)CrossRefGoogle Scholar
- 30.F. Carta, C.T. Supuran, A. Scozzafava, Future Med. Chem. 6, 1149 (2014)CrossRefGoogle Scholar
- 31.N. Krall, F. Pretto, W. Decurtins, G.J.L. Bernardes, C.T. Supuran, D. Neri, Angew. Chem. Int. Ed. Engl. 53, 4231 (2014)CrossRefGoogle Scholar
- 32.M.N. Abdel Gawad, N.H. Amin, M.T. Elsaadi, F.M.M. Mohamed, A. Angeli, V.D. Luca, C. Capasso, C.T. Supuran, Bioorg. Med. Chem. 24, 3043 (2016)CrossRefGoogle Scholar
- 33.M. Bavadi, K. Niknam, O. Shahraki, J. Mol. Struct. 1146, 242–253 (2017)CrossRefGoogle Scholar
- 34.M. Bavadi, K. Niknam, M. Gharibi, Monatsh. Chem. 148, 1025–1034 (2017)CrossRefGoogle Scholar