Journal of the Iranian Chemical Society

, Volume 15, Issue 7, pp 1535–1543 | Cite as

Magnetic polymer microspheres based on phosphotungstic acid quaternary ammonium salt as an efficient heterogeneous catalyst for epoxidation of cyclohexene

  • Yue You
  • Congying Luo
  • Weixia Zhu
  • Yadong Zhang
Original Paper


The magnetic polymer microsphere catalysts based on phosphotungstic acid quaternary ammonium salt were designed and prepared in order to improve the performance and reusability of the catalysts during the epoxidation of cyclohexene. The structure, particle size and surface property of the new catalysts were characterized by FTIR, laser particle size analysis and SEM, respectively. And the reactivity of the catalysts was detected in cyclohexene epoxidation. Among the obtained catalysts, PS-double-D-PW4 catalyst exhibited the best catalytic performance and high stability for cyclohexene epoxidation. The results showed that the optimum yield of epoxycyclohexane was 83% with a selectivity above 95% after 7 h. And the catalyst still showed a conversion above 78% after six runs.


Cyclohexene Epoxycyclohexane Magnetic polymer microspheres catalyst Grafted Phosphotungstic acid quaternary ammonium salt 



This work was supported by the NSFC – He’nan Joint Fund General Project (162300410253) and National Natural Science Foundation of China (21706240).


  1. 1.
    J. Dou, F. Tao, Appl. Catal. A 529, 134 (2017)CrossRefGoogle Scholar
  2. 2.
    N. Mizuno, K. Yamaguchi, K. Kamatab, Coord. Chem. Rev. 249, 1944 (2005)CrossRefGoogle Scholar
  3. 3.
    S. Huber, M. Cokoja, F.E. Kühn, J. Organomet. Chem. 751, 25 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Martínez, M.F. Cáceres, F. Martínez, E.A. Páez-Mozo, S. Valange, N.J. Castellanos, D. Molina, J. Barrault, H. Arzoumanian, J. Mol. Catal. A Chem. 423, 248 (2016)CrossRefGoogle Scholar
  5. 5.
    A.K. Dutta, S. Samanta, S. Dutta, C.R. Lucas, L.N. Dawe, P. Biswas, B. Adhikary, J. Mol. Struct. 1115, 207 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Bagherzadeh, M. Zare, T. Salemnoush, S. Özkar, S. Akbayrak, Appl. Catal. A 475, 55 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Sharbatdaran, F. Farzaneh, M.M. Larijani, A. Salimi, M. Ghiasi, M. Ghandi, Polyhedron 115, 264 (2016)CrossRefGoogle Scholar
  8. 8.
    Q. Lan, C. Liu, F. Yang, S.Y. Liu, J. Xu, D. Sun, J. Colloid Interface Sci. 260, 310 (2007)Google Scholar
  9. 9.
    J.J. Cui, C.G. Niu, X.Y. Wang, G.M. Zeng, J. Appl. Polym. Sci. 44, 528 (2016)Google Scholar
  10. 10.
    X. Li, J.J. Zhou, L. Tian, Y.F. Wang, B.L. Zhang, H.P. Zhang, Q.Y. Zhang, Sens. Actuators B 241, 413 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Afshari, M. Gorjizadeh, S. Nazari, M. Naseh, J. Magn. Magn. Mater. 363, 13 (2014)CrossRefGoogle Scholar
  12. 12.
    Q. Lan, C. Liu, F. Yang, S.Y. Liu, J. Xu, D. Sun, J. Colloid Interface Sci. 310, 260 (2007)CrossRefPubMedGoogle Scholar
  13. 13.
    Z.J. Wang, K.J. Balkus Jr., Microporous Mesoporous Mater. 243, 76 (2017)CrossRefGoogle Scholar
  14. 14.
    N. Igarashi, K. Hashimoto, T. Tatsumi, Microporous Mesoporous Mater. 104, 269 (2007)CrossRefGoogle Scholar
  15. 15.
    I. Tyablikov, B. Romanovsky, Catal. Today 278, 40 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Tekla, K.A. Tarach, Z. Olejniczak, V. Girman, K.G. Marek, Microporous Mesoporous Mater. 233, 16 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Peng, X.H. Lu, X.T. Ma, Y. Shen, C.C. Wei, J. He, D. Zhou, Q.H. Xia, J. Mol. Catal. A Chem. 423, 393 (2016)CrossRefGoogle Scholar
  18. 18.
    O.A. Kholdeeva, T.A. Trubitsina, M.N. Timofeeva et al., J. Mol. Catal. A Chem. 232, 173 (2005)CrossRefGoogle Scholar
  19. 19.
    H. Wang, Y.P. Yang, D.W. Fang, S.L. Zang, Oxid. Commun. 37, 112 (2014)Google Scholar
  20. 20.
    Y. Ding, B.C. Ma, D.J. Tong, H. Hua, W. Zhao, Aust. J. Chem. 62, 947 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Leng, J. Liu, P.P. Jiang, J. Wang, Am. Chem. Soc. 3, 170 (2015)Google Scholar
  22. 22.
    J.W. Zhao, Y. Leng, P.P. Jiang, J. Wang, C.J. Zhang, New J. Chem. 40, 1022 (2016)CrossRefGoogle Scholar
  23. 23.
    A.K. Dutta, S. Samanta, S. Dutta, C.R. Lucas, L.N. Dawe, P. Biswas, B. Adhikary, J. Mol. Struct. 1115, 201 (2016)CrossRefGoogle Scholar
  24. 24.
    W.W. Cheng, G.Q. Liu, X.D. Wang, X.Q. Liu, L. Jing, Eur. J. Lipid Sci. Technol. 117, 1185 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Maleki, R. Rahimi, S. Maleki, Environ. Chem. Lett. 14, 195 (2016)CrossRefGoogle Scholar
  26. 26.
    Z.X. Wang, Y.D. Zhang, P.G. Tang, Fine Chem. 23, 1023 (2006)Google Scholar
  27. 27.
    K.K. Sun, Y.D. Zhang, Pet. Chem. Technol. 37, 821 (2008)Google Scholar
  28. 28.
    R. Anwander, I. Nagl, M. Widenmeyer, J. Phys. Chem. B. 15, 3532 (2000)CrossRefGoogle Scholar
  29. 29.
    H.J. Wu, G.L. Wu, L.D. Wang, Powder Technol. 269, 443 (2015)CrossRefGoogle Scholar
  30. 30.
    R.H. Qin, W. Jiang, H.Y. Liu, F.S. Li, Mater. Hera. 9, 66 (2003)Google Scholar
  31. 31.
    H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, J. Mater. Chem. C. 3, 7677 (2015)CrossRefGoogle Scholar
  32. 32.
    Y.L. Wang, Y.X. Zhang, S. D. Chem. Ind. 21, 47 (2016)Google Scholar
  33. 33.
    H. Su, G.Y. Yang, D.G. Jiang, H. N. Chem. Ind. 29, 6 (2008)Google Scholar
  34. 34.
    Z.X. Wang, Y.D. Zhang, H.Y. Tian, J. Ceram. Soc. Chin. Univ. 23, 895 (2009)Google Scholar

Copyright information

© Iranian Chemical Society 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering EnergyZhengzhou UniversityZhengzhouChina

Personalised recommendations