Advertisement

Optimization of conditions for improved solar energy harvesting application by hydrothermally grown TiO2 nanorods

  • Muhammad Adil MansoorEmail author
  • Farazila Binti Yusof
  • Huang Nay-Ming
Original Paper
  • 9 Downloads

Abstract

In this study, using the optimum annealing temperature and time for hydrothermally grown TiO2 nanorods, photooxidation of water at different pH values of the electrolyte solution is investigated. The composition, crystallinity and topographic studies of films, sintered at different temperatures of 200–500 °C for 2 h and annealed for 1–4 h at 400 °C, were evaluated by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and field emission scanning electron microscopy. The sintering at high temperature and for longer time demonstrates an increase in crystallinity, but at the same time agglomeration of nanorods for prolonged heating and at high temperature leads to cracking at the surface of the films. Further, UV–Vis spectroscopic studies revealed prolonged heating and high-temperature sintering resulted in a red shift in light absorption edge of the films. The chronoamperometric measurement results under regular interrupted chopping revealed that the sample annealed at 400 °C for 2 h gives the best photoelectrochemical response with photocurrent density of 522 µA cm− 2 using 0.5M NaOH. The chronoamperometric response under different pH values of 13.7, 7.2 and 2.5 proved that TiO2 gives the best response under a basic pH of 13.7 and the least under acidic media. The electrochemical impedance studies provided an insight into the charge transfer mechanism under dark and illumination with Rct value of 1188.8 Ω under dark and 164.5 Ω under light conditions for the film annealed at 400 °C for 2 h.

Keywords

TiO2 nanorods Surface morphology Optical band gap Photocurrent density 

Notes

Funding

This study was funded by the FRGS Grant No. FP062-2015A.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

13738_2018_1586_MOESM1_ESM.docx (2 mb)
The table for sample coding, Figures for (i) XRD stick pattern matching with standard card, (ii) High magnification FESEM images and (iii) Trend in photoresponse with elapsed time, and possible pathways for electrode surface reaction are available in supplementary data (DOCX 1997 KB)

References

  1. 1.
    D. Pile, Nat Photon 6, 637 (2012)Google Scholar
  2. 2.
    A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)CrossRefGoogle Scholar
  3. 3.
    J.C. Grenier, J.M. Bassat, F. Mauvy, in Functional materials for sustainable energy applications, eds. by J. A. Kilner, S.J. Skinner, S.J.C. Irvine, P.P. Edwards (Woodhead Publishing, Sawston, 2012), p. 402  https://doi.org/10.1533/9780857096371.3.402
  4. 4.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  5. 5.
    O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)CrossRefGoogle Scholar
  6. 6.
    J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Ksibi, S. Rossignol, J.-M. Tatibouët, C. Trapalis, Mater. Lett. 62, 4204 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114, 13118 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Liu, J. Yu, M. Jaroniec, Chem. Mater. 23, 4085 (2011)CrossRefGoogle Scholar
  10. 10.
    M.G.I.N. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.S. Keane, R.F.Howe, J Llorca, H Idriss, Nat. Chem. 3, 489 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Yu, J. Ran, Energy Environ. Sci. 4, 1364 (2011)CrossRefGoogle Scholar
  12. 12.
    D. Zhang, M. Wen, S. Zhang, P. Liu, W. Zhu, G. Li, H. Li, Appl. Catal. B 147, 610 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Bian, C. Huang, L. Wang, T. Hung, W.A. Daoud, R. Zhang, ACS Appl. Mater. Interfaces. 6, 4883 (2014)CrossRefGoogle Scholar
  14. 14.
    Q. Zhou, S. Zhang, X. Yang, Q. Wu, H. Zhao, M. Wu, Sens. Actuators B 186, 132 (2013)CrossRefGoogle Scholar
  15. 15.
    Q. Mu, Y. Li, Q. Zhang, H. Wang, J. Hazard. Mater. 188, 363 (2011)CrossRefGoogle Scholar
  16. 16.
    E.C. Scher, L. Manna, A.P. Alivisatos, Philoso Trans R Soc Lond. Ser A: Math Phys Eng Sci. 361, 241 (2003)CrossRefGoogle Scholar
  17. 17.
    L. Manna, E.C. Scher, A.P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000)CrossRefGoogle Scholar
  18. 18.
    X.Y. Zhang, L.D. Zhang, W. Chen, G.W. Meng, M.J. Zheng, L.X. Zhao, F. Phillipp, Chem. Mater. 13, 2511 (2001)CrossRefGoogle Scholar
  19. 19.
    Y. Li, J. Xiang, F. Qian, S. Gradečak, Y. Wu, H. Yan, D.A. Blom, C.M. Lieber, Nano Lett. 6, 1468 (2006)CrossRefGoogle Scholar
  20. 20.
    S. Gradečak, F. Qian, Y. Li, H.-G. Park, C.M. Lieber, Appl. Phys. Lett. 87, 173111 (2005)CrossRefGoogle Scholar
  21. 21.
    T. Kuykendall, P. Ulrich, S. Aloni, P. Yang, Nat. Mater. 6, 951 (2007)CrossRefGoogle Scholar
  22. 22.
    D.A. Boyd, L. Greengard, M. Brongersma, M.Y. El-Naggar, D.G. Goodwin, Nano Lett. 6, 2592 (2006)CrossRefGoogle Scholar
  23. 23.
    A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Small 5, 104 (2009)CrossRefGoogle Scholar
  24. 24.
    L. Vayssieres, Adv. Mater. 15, 464 (2003)CrossRefGoogle Scholar
  25. 25.
    L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)CrossRefGoogle Scholar
  26. 26.
    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)CrossRefGoogle Scholar
  27. 27.
    H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)CrossRefGoogle Scholar
  28. 28.
    Z. Yang, B. Wang, H. Cui, H. An, Y. Pan, J. Zhai, J. Phys. Chem. C 119, 16905 (2015)CrossRefGoogle Scholar
  29. 29.
    Y.-C. Pu, Y. Ling, K.-D. Chang, C.-M. Liu, J.Z. Zhang, Y.-J. Hsu, Y. Li, J. Phys. Chem. C 118, 15086 (2014)CrossRefGoogle Scholar
  30. 30.
    G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11, 3026 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Li, S. Ji, Y. Gao, H. Luo, M. Kanehira, Sci Rep. 3, 1370 (2013)CrossRefGoogle Scholar
  32. 32.
    Y. Sun, K. Yan, G. Wang, W. Guo, T. Ma, J. Phys. Chem. C 115, 12844 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Rozana, K. Abdul Razak, C.K. Yew, Z. Lockman, G. Kawamura, A. Matsuda, J. Mater. Res. 31, 1681 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Crawford, E. Thimsen, P. Biswas, J. Electrochem. Soc. 156, H346 (2009)CrossRefGoogle Scholar
  35. 35.
    N.R. Mathews, E.R. Morales, M.A. Cortés-Jacome, J.A. Toledo, Antonio, Sol. Energy 83, 1499 (2009)CrossRefGoogle Scholar
  36. 36.
    D. Zhao, T. Peng, L. Lu, P. Cai, P. Jiang, Z. Bian, J. Phys. Chem. C 112, 8486 (2008)CrossRefGoogle Scholar
  37. 37.
    A.K.M. Muaz, U. Hashim, F. Ibrahim, K.L. Thong, M.S. Mohktar, W.-W. Liu, Microsyst. Technol. 22, 871 (2016)CrossRefGoogle Scholar
  38. 38.
    B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, Langmuir 17, 2664 (2001)CrossRefGoogle Scholar
  39. 39.
    S. Kelly, F.H. Pollak, M. Tomkiewicz, J. Phys. Chem. B 101, 2730 (1997)CrossRefGoogle Scholar
  40. 40.
    X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, J.R. Lombardi, J. Phys. Chem. C 116, 8792 (2012)CrossRefGoogle Scholar
  41. 41.
    L. Meng, C. Li, M.P. dos Santos, J. Inorg. Organomet. Polym. Mater. 21, 770 (2011)CrossRefGoogle Scholar
  42. 42.
    J. Ungula, B.F. Dejene, H.C. Swart, Results Phys. 7, 2022 (2017)CrossRefGoogle Scholar
  43. 43.
    M.A. Mansoor, N.M. Huang, V. McKee, T.A.N. Peiris, K.G.U. Wijayantha, Z. Arifin, M. Misran, M. Mazhar, Sol. Energy Mater. Sol. Cells 137, 258 (2015)CrossRefGoogle Scholar
  44. 44.
    M.A. Mansoor, M. Mazhar, A. Pandikumar, H. Khaledi, H. Nay Ming, Z. Arifin, Int. J. Hydrogen Energy 41, 9267 (2016)CrossRefGoogle Scholar
  45. 45.
    X. Zheng, S. Shen, F. Ren, G. Cai, Z. Xing, Y. Liu, D. liu, G. Zhang, X. Xiao, W. Wu, C. Jiang, Int. J. Hydrogen Energy 40, 5034 (2015)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Advanced Manufacturing and Materials Processing (AMMP) Centre, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Chemistry, School of Natural SciencesNational University of Sciences and TechnologyIslamabadPakistan
  3. 3.New Energy Science and Engineering DepartmentUniversity of Xiamen MalaysiaSepangMalaysia

Personalised recommendations