Advertisement

Application of nano graphene-modified electrode as an electrochemical sensor for determination of tapentadol in the presence of paracetamol

  • Manal A. El-ShalEmail author
  • Hassan A. M. H. Hendawy
  • Ghada M. G. Eldin
  • Zeinab A. El-Sherif
Original Paper
  • 29 Downloads

Abstract

Graphene-modified electrode (GME), as a selective and sensitive voltammetric sensor, was applied as the sensor used for the determination of tapentadol hydrochloride (TP) in the presence of paracetamol (PC) without any interference. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry techniques have been utilized in this work. The experimental parameters, time, pH and scan rate have all been examined and optimized. Compared to carbon paste CPE, an increase of current signal was observed, demonstrating that GME exhibited favorable electron transfer kinetics and electrocatalytic activity towards the oxidation of TP at 0.82 V. The linear range was found 17.0–136.3 ng mL−1 in Britton–Robinson buffer (B–R) at pH 5.0. LOD and LOQ were calculated and found to be 5.48 and 16.45 ng mL−1, respectively. The suggested method has been used successfully for determination of TP in pharmaceutical samples and spiked human urine samples. The suggested sensor is highly suitable for clinical analysis, quality control and routine determination of TP.

Keywords

Tapentadol Nano graphene Modified sensors Voltammetric techniques 

Supplementary material

13738_2018_1585_MOESM1_ESM.docx (462 kb)
Supplementary material 1 (DOCX 461 KB)

References

  1. 1.
    A.D. Kaye, M.R. Jones, A.M. Kaye, J.G. Ripoll, V. Galan, B.D. Beakley, F. Calixto, J.L. Bolden, R.D. Urman, L. Manchikanti, Pain Physician 20, S93–S109 (2017)Google Scholar
  2. 2.
    W.M. Compton, M. Boyle, E. Wargo, Prev. Med. 80, 5–9 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Günther, P. Dasgupta, A. Mann, E. Miess, A. Kliewer, S. Fritzwanker, R. Steinborn, S. Schulz, Br. J. Pharmacol. 175, 2857–2868 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Ventura, F. Carvalho, R. Dinis-Oliveira, Curr. Mol. Pharmacol. 11, 97–108 (2018)CrossRefGoogle Scholar
  5. 5.
    L.u. Švorc, P. Tomčík, J. Svítková, M. Rievaj, D. Bustin, Food Chem. 135, 1198–1204 (2012)CrossRefGoogle Scholar
  6. 6.
    R.M. Langford, R. Knaggs, P. Farquhar-Smith, A.H. Dickenson, Br. J. Pain 10, 217–221 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Faria, J. Barbosa, R. Moreira, O. Queirós, F. Carvalho, R. Dinis-Oliveira, Eur. J. Pain 22, 827–844 (2018)CrossRefGoogle Scholar
  8. 8.
    R. Raffa, J. Clin. Pharm. Ther. 26, 257–264 (2001)CrossRefGoogle Scholar
  9. 9.
    K. McClellan, L.J. Scott, Drugs 63, 1079–1086 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Giorgi, A. Meizler, P.C. Mills, J. Pharm. Biomed. Anal. 67–68, 148–153 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Douša, P. Lehnert, H. Adamusová, Z. Bosáková, J. Pharm. Biomed. Anal. 74, 111–116 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Coulter, M. Taruc, J. Tuyay, C. Moore, J. Anal. Toxicol. 34, 458–463 (2010)CrossRefGoogle Scholar
  13. 13.
    B. Singh, B. Jhanwar, G. Saini, Chem. Tech. 1, 940–947 (2017)Google Scholar
  14. 14.
    M.M. Mobrouk, H.M. El-Fatatry, S.F. Hammad, A.A. Mohamed, JAPS 3, 122–125 (2013)Google Scholar
  15. 15.
    H.M. El-Fatatry, M.M. Mabrouk, S.F. Hammad, S.F. El- Malla, WJPS 3, 1290–1297 (2015)Google Scholar
  16. 16.
    G. Krishnamoorthy, N. Gayathri, A. Ismail, R. Senthamarai, R. Banu, S. Shakila, Int. J. Pharm. Sci. Rev. Res 25, 139–141 (2014)Google Scholar
  17. 17.
    H. Bagheri, E. Ranjbari, A. Amiri-Aref, H. Hajian, Y.H. Ardakaniand, S. Amidi, Biosens. Bioelectron. 85, 814–821 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Chen, Q.H. Yang, Y. Yang, W. Lv, Y. Wen, P.X. Hou, M. Wang, H.M. Cheng, Adv. Mater. 21, 3007–3011 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20, 3557–3561 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Roushani, A. Valipour, Sens. Actuators B: Chem. 222, 1103–1111 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Electrochem. Commun. 11, 889–892 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)CrossRefGoogle Scholar
  23. 23.
    M. Roushani, M. Sarabaegi, J. Iran. Chem. Soc. 12, 1875–1882 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Ao, J. Yang, S. Li, Q. Jiang, Chem. Phys. Lett. 461, 276–279 (2008)CrossRefGoogle Scholar
  25. 25.
    N. Peres, F. Guinea, A.C. Neto, Phy. Rev. B 73, 12533–125411 (2006)Google Scholar
  26. 26.
    J. Wang, S. Yang, D. Guo, P. Yu, D. Li, J. Ye, L. Mao, Electrochem. Commun. 11, 1892–1895 (2009)CrossRefGoogle Scholar
  27. 27.
    C. Xu, X. Wang, J. Zhu, J. Phys. Chem. C 112, 19841–19845 (2008)CrossRefGoogle Scholar
  28. 28.
    B. Hong, Q. Cheng, Adv. Chem. Eng. Sci. 2, 453 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Motaharian, M.R.M. Hosseini, Anal. Methods 8, 6305–6312 (2016)CrossRefGoogle Scholar
  30. 30.
    M.A. Mohamed, A.M. Fekry, M.A. El-Shal, C.E. Banks, Electroanalysis 29, 2551–2558 (2017)CrossRefGoogle Scholar
  31. 31.
    M.A. El-Shal, A.K. Attia, Abechem 5, 32–45 (2013)Google Scholar
  32. 32.
    H.A. Hendawy, R.M. Youssif, N.N. Salama, A.S. Fayed, M.Y. Salem, Electroanalysis 29, 2708–2718 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Shalaby, W.S. Hassan, H.A. Hendawy, A. Ibrahim, J. Electroanal. Chem. 763, 51–62 (2016)CrossRefGoogle Scholar
  34. 34.
    R. Compton, C. Banks, Understanding Voltammetry (World Scientific, New Jersey, 2007)CrossRefGoogle Scholar
  35. 35.
    K.S. Ngai, W.T. Tan, Z. Zainal, R.M. Zawawi, M. Zidan, Int. J. Electrochem. Sci. 8, 10557–10567 (2013)Google Scholar
  36. 36.
    G.P. Keeley, M.E. Lyons, Int. J. Electrochem. Sci. 4, 794–809 (2009)Google Scholar
  37. 37.
    A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, (Wiley, New York, 1980)Google Scholar
  38. 38.
    H. Karimi-Maleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri, R. Moradi, Biosens. Bioelectron. 86, 879–884 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Cheraghi, M.A. Taher, H. Karimi-Maleh, Electroanalysis 28, 2590–2597 (2016)CrossRefGoogle Scholar
  40. 40.
    H. Karimi-Maleh, K. Ahanjan, M. Taghavi, M. Ghaemy, Anal. Methods 8, 1780–1788 (2016)CrossRefGoogle Scholar
  41. 41.
    Y. Wu, X. Ji, S. Hu, Bioelectrochemistry 64, 91–97 (2004)CrossRefGoogle Scholar
  42. 42.
    A. Bard, L. Faulkner, Electrochemical Methods, 2nd edn. (Wiley, New York, 2001)Google Scholar
  43. 43.
    M.A. Mohamed, S.A. Atty, N.N. Salama, C.E. Banks, Electroanalysis. (2017).  https://doi.org/10.1002/elan.201600668 Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.National Organization for Drug Control and ResearchCairoEgypt

Personalised recommendations