Advertisement

Silica-supported orthophosphoric acid (OPA/SiO2): preparation, characterization, and evaluation as green reusable catalyst for pinacolic rearrangement

  • Muriel BillambozEmail author
  • Estelle Banaszak
Original Paper
  • 5 Downloads

Abstract

In this paper, we report an easy-to-prepare, cost-effective, efficient, and reusable silica-supported orthophosphoric acid (OPA) catalyst for pinacolic rearrangement. The surface properties of this catalyst were successfully characterized with the help of 31P NMR, TGA, DSC, FT-IR, titration, and microscopy. OPA, hydrogen bonded on the surface, is actually the active species and the reaction seems to occur in the liquid phase embedded in the silica support. As a consequence, the extracting solvent should be chosen with cautious to guarantee the recyclability of the catalyst. As example, pinacol rearrangement reactions were successfully realized with this catalyst and OPA/SiO2 proved to be as efficient as homogeneous orthophosphoric acid to promote the reaction of pinacol derivatives. When using dichloromethane as extracting solvent, OPA/SiO2 can be reuse up to ten times without a significant loss of activity. After ten runs, no physical damage of the catalyst has been observed by microscopy proving its suitability for such application.

Keywords

Supported acid catalyst Physico-chemical characterization Green chemistry Recyclability Rearrangement 

Notes

Acknowledgements

MB and EL would like to thank Pr. A. Daïch for his pieces of advice and Dr D. Luart for practical assistance.

Supplementary material

13738_2018_1582_MOESM1_ESM.docx (445 kb)
Supplementary material 1 (DOCX 444 KB)

References

  1. 1.
    M.A. Zolfigol, F. Shirini, K. Zamani, E. Ghofrani, S. Ebrahimi, Phosphorus Sulfur Silicon Relat. Elem. 179, 2177 (2004)CrossRefGoogle Scholar
  2. 2.
    S. Pathak, K. Debnath, A. Pramanik, Beilstein J. Org. Chem. 9, 2344 (2013)CrossRefGoogle Scholar
  3. 3.
    B. Wu, Z. Tong, X. Yuan, J. Porous Mater. 19, 641 (2012)CrossRefGoogle Scholar
  4. 4.
    R.J.P. Corriu, L. Datas, Y. Guari, A. Mehdi, C. Reye, C. Thieuleux, Chem. Commun. 763 (2001)Google Scholar
  5. 5.
    A.D. Sawanta, D.G. Rauta, A.R. Deorukhkara, U.V. Desaia, M.M. Salunkhe, Green Chem. Lett. Rev. 4, 235 (2011)CrossRefGoogle Scholar
  6. 6.
    B. Maleki, H.K. Shirvan, F. Taimazi, E. Akbarzadeh. Int. J. Org. Chem. 2, 93 (2012)CrossRefGoogle Scholar
  7. 7.
    F.L. Pissetti, M.S.P. Francisco, R. Landersb, Y. Gushikem, J. Braz. Chem. Soc. 18, 976 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Rostamizadeh, A.M. Amani, N. Shadjou, Phosphorus Sulfur Silicon Relat. Elem. 187, 238 (2012)CrossRefGoogle Scholar
  9. 9.
    J.M. Riego, Z. Sedin, J.M. Zaldlvar, N.C. Marzianot, C. Tortatot, Tetrahedron Lett. 37, 513 (1996)CrossRefGoogle Scholar
  10. 10.
    Z.C. Tang, D.H. Yu, P. Sun, H. Li, H. Huang, Bull. Korean Chem. Soc. 31, 3679 (2010)CrossRefGoogle Scholar
  11. 11.
    L.R.R. Araujo, C.F. Scofield, N.M.R. Pastura, W.A. Gonzalez, Mater. Res. 9, 181 (2006)CrossRefGoogle Scholar
  12. 12.
    H.R. Shaterian, N. Fahimi, K. Azizi, Res. Chem. Intermed. 40, 1403 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Bamoniri, B.F. Mirjalili, S. Nazemian, J. Nanostruct. 2, 101 (2012)Google Scholar
  14. 14.
    R. Wang, Y. Li, Catal. Commun. 11, 705 (2010)CrossRefGoogle Scholar
  15. 15.
    S.K. Bharadwaj, P.K. Boruah, P.K. Gogoi, Catal. Commun. 57, 124 (2014)CrossRefGoogle Scholar
  16. 16.
    K.V. Thiruvengadaravi, J. Nandagopal, P. Baskaralingam, V.S.S. Bala, P. Vijayalakshmi, S.D. Kirupha, S. Sivanesan, Energy Sources 34, 2234 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Sebah, S.P. Maddala, P. Haycock, A. Sullivan, H. Toms, J. Wilson, J. Mol. Catal. A Chem. 374–375, 59 (2013)CrossRefGoogle Scholar
  18. 18.
    Guidi, Busca, Heterogeneous catalytic materials: solid state chemistry, surface chemistry. (Elsevier, Amsterdam, 2014)Google Scholar
  19. 19.
    A.J. Johnson, C.R. Nelson, Chem. Ind. (London), 528 (1953)Google Scholar
  20. 20.
    S.V. Dobrovolskii, R.M. Grizik, I.G. Kronich, I.I. Ioffe, Sbornik Statei, Nauch.-Issledovatel. Inst. Org. Poluprod. I Krasitelei, 2, 148 (1961)Google Scholar
  21. 21.
    A. Nastasi, T. Filotti, M. Stoica, Rev. Chim. 18, 581 (1967)Google Scholar
  22. 22.
    E. Fabisz, R. Cwik, R. Musiol, J. Czyz, H. Pilarczyk, Pol. 1979, PL 104719 B1 19790929, Chem. Abstr. 95, 61451 (1981)Google Scholar
  23. 23.
    A. Mitsutani, Y. Hamamoto, U.S 1966, US 3284534 19661108. Chem. Abstr. 66, 18501 (1967)Google Scholar
  24. 24.
    Y. Takayama, S. Saito, Jpn. Tokkyo Koho, 1969, JP44001430 B 19690122Google Scholar
  25. 25.
    H. Hofmann, S. Janacek, H. Corsepius, Brit. 1970, GB 1206839 19700930, Chem. Abstr. 1971, 75, 48472Google Scholar
  26. 26.
    M. Statman, D.S. Martin, U.S, US 3554926 A 19710112. Chem. Abstr 1971, 74, 124793 (1971)Google Scholar
  27. 27.
    T. Dockner, R. Platz, Ger. Offen, DE 2511978 A1 19760930. Chem. Abstr 1977, 86, 16308 (1976)Google Scholar
  28. 28.
    M. Chakrabarty, R. Mukherjee, A. Mukherji, S. Arima, Y. Harigaya, Heterocycles 68, 1659 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Lock, N. Miyoshi, M. Wada, Chem. Lett. 33, 1308 (2004)CrossRefGoogle Scholar
  30. 30.
    P. Mayavel, K. Thirumurthy, S. Dineshkumar, G. Thirunarayanan, Indian J. Chem., Section B: Org. Chem. Including Med. Chem. 54B, 779 (2015)Google Scholar
  31. 31.
    S.D. Ohmura, C. Muroi, H. Sakata, M. Wada, N. Miyoshi, J. Pol. Env. 25, 250 (2017)CrossRefGoogle Scholar
  32. 32.
    G. Thirunarayan, V. Renuka, J. Chilean Chem. Soc. 59, 2574 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Hamamatsu, N. Kimura, T. Takashima, T. Morikita, Jpn. Tokkyo Koho, 2012, JP 5102943 B2 20121219, Chem. Abstr. 2012, 158, p. 76641Google Scholar
  34. 34.
    L. Dufek, Czech, CS 130862 19690115. Chem. Abstr 1970, 72, 48067 (1969)Google Scholar
  35. 35.
    K. Shiotani, T. Tomioka, S. Katahira, Jpn. Kokai Tokkyo Koho 1977, JP 52004499 A 19770113. Chem. Abstr 86, 191987 (1977)Google Scholar
  36. 36.
    F. Piechaczek, E. Fabisz, R. Burczyk, Pol, PL 57962 19690830. Chem. Abstr 1970, 72, 48064 (1969)Google Scholar
  37. 37.
    P. Abrahamsson, B. Gevert, S. Jaeras, Eur. Pat. Appl. 1990, EP 371938 A1 19900606. Chem. Abstr 113, 100676 (1990)Google Scholar
  38. 38.
    L.T. Zhura, Colloids and Surfaces A: Physicochem. Eng. Aspects 173, 1 (2000)CrossRefGoogle Scholar
  39. 39.
    Y. Maki, K. Sato, A. Isobe, N. Iwasa, S. Fujita, M. Shimokawabe, N. Takezawa, Appl. Catal. A: General 170, 269 (1998)CrossRefGoogle Scholar
  40. 40.
    W. Li, F. Xie, D. Hua, C. Zhang, C. Dai, Z. Yu, M. Qi, S. Yu, Front. Chem. Sci. Eng. 5, 314 (2011)CrossRefGoogle Scholar
  41. 41.
    C. Reichardt, Solvents and solvent effects in organic chemistry (Wiley, Hoboken, 3rd ed., 2003)Google Scholar
  42. 42.
    K.R. Dixon, Phosphorus to bismuth. In: Multinuclear NMR, 2nd edn., ed. by J. Mason (Plenum Press, London, 1989)Google Scholar
  43. 43.
    I.L. Mudrakovskii, V.M. Mastikhin, N.S. Kotsarenko, V.P. Shmachokova, Kinet. Katal. 291, 190 (1988)Google Scholar
  44. 44.
    M.E. Manrıquez, T. Lopez, R. Gomez, M. Picquart, J.G. Hernandez-Cortez, J. Non-Cryst. Solids 345–346, 643 (2004)CrossRefGoogle Scholar
  45. 45.
    W.W. Rudolph, Dalton Trans. 39, 9642 (2010)CrossRefGoogle Scholar
  46. 46.
    M.J.D. Low, P. Ramamurthy, J. Phys. Chem. 72, 3161 (1968)CrossRefGoogle Scholar
  47. 47.
    P.K. Jal, M. Sudarshan, A. Saha, S. Patel, B.K. Mishra, Colloids Surf. A: Physiochem. Eng. Aspects 240, 173 (2004)CrossRefGoogle Scholar
  48. 48.
    V.M. Bermudez, J. Phys. Chem. 75, 3249 (1971)CrossRefGoogle Scholar
  49. 49.
    S. Haukka, E.-L. Lakomaa, A. Root, J. Phys. Chem. 97, 5085 (1993)CrossRefGoogle Scholar
  50. 50.
    B.A. Morrow, A.J. McFarlan, Langmuir 7, 1695 (1991)CrossRefGoogle Scholar
  51. 51.
    X.S. Zhao, G.Q. Lu, A.K. Whittaker, G.J. Millar, H.Y. Zhu, J. Phys. Chem. B 101, 6525 (1997)CrossRefGoogle Scholar
  52. 52.
    V. Dugas, Y. Chevalier, J. Colloid Interface Sci. 264, 354 (2003)CrossRefGoogle Scholar
  53. 53.
    C.P. Tripp, M.L. Hair, Langmuir 8, 1120 (1992)CrossRefGoogle Scholar
  54. 54.
    C.P. Tripp, M.L. Hair, Langmuir 11, 1215 (1995)CrossRefGoogle Scholar
  55. 55.
    M. Bjelopavlic, P.K. Singh, H. El-Shall, B.M. Moudgil, J. Colloid Interface Sci. 226, 159 (2000)CrossRefGoogle Scholar
  56. 56.
    V.M. Gun’ko, M.S. Vedamuthu, G.L. Henderson, J.P. Blitz, J. Colloid Interface Sci. 228, 157 (2000)CrossRefGoogle Scholar
  57. 57.
    L.R. Snyder, J.W. Ward, J. Phys. Chem. 70, 3941 (1966)CrossRefGoogle Scholar
  58. 58.
    S. Haukka, A. Root, J. Phys. Chem. 98, 1695 (1994)CrossRefGoogle Scholar
  59. 59.
    S. Musić, N. Filipović-Vinceković, L. Sekovanić, Braz. J. Chem. Eng. 28 (2011)Google Scholar
  60. 60.
    L. Jongwon, Y. Cheol-Woo, K. Keon, Bull. Korean Chem. Soc. 33, 1397 (2012)CrossRefGoogle Scholar
  61. 61.
    R. Srivastava, S. Chandra, Phys. Status Solidi A 191, 202 (2002)CrossRefGoogle Scholar
  62. 62.
    A. Matsuda, T. Kanzaki, Y. Kotani, M. Tatsumisago, T. Minami, Solid State Ionics 139, 113 (2001)CrossRefGoogle Scholar
  63. 63.
    H. Bosshard, M.E. Baumann, G. Schetty, Helv. Chim. Acta 53, 1271 (1970)CrossRefGoogle Scholar
  64. 64.
    X. Li, L. Yuan, Q. Wang, L. Liang, G. Huang, X. Li, C. Zhang, S. Liu, J. Liu, Tetrahedron Lett. 58, 1437 (2017)CrossRefGoogle Scholar
  65. 65.
    G.A. Hill, E.W. Flosdorf, Org. Synth. V, 91 (1925)Google Scholar
  66. 66.
    C.A. Bunton, T. Hadwick, D.R. Llewellyn, Y. Pocker, J. Chem. Soc. 403 (1958)Google Scholar
  67. 67.
    W. Tadros, A.B. Sakla, S.B. Awad, A.A. Helmy, Helv. Chim. Acta 55, 2808 (2004)CrossRefGoogle Scholar
  68. 68.
    K. Matsumoto, Tetrahedron 24, 6851 (1968)CrossRefGoogle Scholar
  69. 69.
    F. Toda, T. Shigemasa, J. Chem. Soc. Perkins Trans. 1, 209 (1989)CrossRefGoogle Scholar
  70. 70.
    M. De Lezaeta, W. Sattar, P. Svoronos, S. Karimi, G. Subramaniam, Tetrahedron Lett. 43, 9307 (2002)CrossRefGoogle Scholar
  71. 71.
    X. Liu, V. Fabos, S. Taylor, D.W. Knight, K. Whiston, G.J. Hutchings, Chem. Eur. J. 22, 12290 (2016)CrossRefGoogle Scholar
  72. 72.
    H.J. Shine, Aromatic rearrangements (Amsterdam, London, New York: Elsevier), 1967, Ch.1; C.J. Collins, J. Am. Chem. Soc. 77, 5515 (1955)Google Scholar
  73. 73.
    R.B. Carlin, K.P. Shivaramakrishnan, J. Org. Chem. 35, 2368 (1970)CrossRefGoogle Scholar
  74. 74.
    J. Weinstock, S. Lewis. J. Am. Chem. Soc. 79, 6243 (1957)CrossRefGoogle Scholar
  75. 75.
    K. Shishido, H. Nozaki, J. Am. Chem. Soc. 70, 776 (1948)CrossRefGoogle Scholar
  76. 76.
    L. Varoli, P. Angeli, M. Buccioni, S. Burnelli, N. Fazio, G. Marucci, M. Recanatini, S. Spampinato, Med. Chem. 42, 121 (2008)CrossRefGoogle Scholar
  77. 77.
    M. Ramah, B. Laude, Bull. Soc. Chim. Fr 11–12, 2649 (1975)Google Scholar
  78. 78.
    R.S. Nohr, J.G. MacDonald. U.S., 5786132, 28 Jul 1998. Chem. Abstr 129, 154769 (1998)Google Scholar
  79. 79.
    Y.H. Lai, P. Chen, J. Chem. Soc., Perkin Trans. 2 11, 1665 (1989)CrossRefGoogle Scholar
  80. 80.
    J.J. Beggs, M.B. Meyers, J. Chem. Soc. B, 930 (1970)Google Scholar
  81. 81.
    K. Nakamura, Y. Osamura, J. Phys. Org. Chem. 3, 737 (1990)CrossRefGoogle Scholar
  82. 82.
    S. Yamabe, N. Tsuchida, S. Yamazaki, J. Comput. Chem. 28, 1561 (2007)CrossRefGoogle Scholar
  83. 83.
    E. Alvarez-Manzaneda, R. Chahboun, I. Barranco, E. Cabrera, E. Alvarez, A. Lara, R. Alvarez-Manzaneda, M. Hmamouch, H.E. Samti, Tetrahedron 63, 11943 (2007)CrossRefGoogle Scholar
  84. 84.
    K. Nakamura, Y. Osamura, J. Am. Chem. Soc. 115, 9112 (1993)CrossRefGoogle Scholar
  85. 85.
    M.C. O’Sullivan, J.M. Schwab, Bioorg. Chem. 23, 131 (1995)CrossRefGoogle Scholar
  86. 86.
    K.P. Minor, L.E. Overman, Tetrahedron 53, 8927 (1997)CrossRefGoogle Scholar
  87. 87.
    M.Y. Chang, Y.-H. Kung, C.-C. Ma, Tetrahedron Lett. 48, 199 (2007)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.Laboratoire de chimie durable et santéYncrea Hauts-de-France, HEILille CedexFrance
  2. 2.Ecole Supérieure de Chimie Organique et Minérale – ESCOMCompiègneFrance

Personalised recommendations