Synthesis of palladium nanocubes decorated polypyrrole nanotubes and its application for electrochemical sensing

  • Xinjin Zhang
  • Qinglin Sheng
  • Jianbin ZhengEmail author
Original Paper


In present work, typical nanocomposites were synthesized, composed of polypyrrole nanotubes and palladium nanocubes. The morphology and composition of the nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The obtained data indicated that the polypyrrole nanotubes and palladium nanocubes were well dispersed with the uniform size about 180 nm and 12.5 nm, respectively. Then the nanocomposites were modified on a glassy carbon electrode to build an electrochemical sensor of dopamine. The data of electrochemical experiments showed that the sensor has an excellent catalytic ability to detect dopamine in a linear range from 1.0 µM to 3.0 mM with a detection limit of 0.33 µM at a signal-to-noise ratio of 3, a sensitivity of 228.56 µA mM−1 cm−2 and a response time of 3 s. The process might provide a special idea to construct a sensor or for application in other fields.


Electrochemical sensor Non-enzymatic Dopamine Palladium nanocubes Polypyrrole nanotubes 



The authors gratefully acknowledge the financial support of this project by the National Science Foundation of China (No. 21575113), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20126101110013), Northwest University Graduate Innovation and Creativity Funds (No. YZZ17125), the Natural Science Foundation of Shaanxi Province in China (2013KJXX-25), and the Scientific Research Foundation of Shaanxi Provincial Key Laboratory (Nos. 15JS100, 16JS099).

Supplementary material

13738_2018_1578_MOESM1_ESM.doc (140 kb)
Supplementary material 1 (DOC 139 KB)


  1. 1.
    N. Fourati, M. Seydou, C. Zerrouki, A. Singh, S. Samanta, F. Maurel, D.K. Aswal, M. Chehimi, ACS Appl. Mater. Interfaces 6, 22378 (2014)Google Scholar
  2. 2.
    J.W. Mo, B. Ogorevc, Anal. Chem. 73, 1196 (2001)Google Scholar
  3. 3.
    R.M. Wightman, L.J. May, A.C. Michael, Anal. Chem. 60, 769A (1988)Google Scholar
  4. 4.
    P. Damier, E.C. Hirsch, Y. Agid, A.M. Graybiel, Brain 122, 1437 (1999)Google Scholar
  5. 5.
    S.R. Ali, Y.F. Ma, R.R. Parajuli, Y. Balogun, W.Y.-C. Lai, H.X. He, Anal. Chem. 79, 2583 (2007)Google Scholar
  6. 6.
    H.T. Xu, F. Kitamura, T. Ohsaka, K. Tokuda, Anal. Sci. 10, 399 (1994)Google Scholar
  7. 7.
    X. Yang, L. Li, F. Yan, Sens. Actuators B Chem. 145, 495 (2010)Google Scholar
  8. 8.
    G. Erdogdu Jr., H.B. Mark, A.E. Karagözler, Polym. Plast. Technol. 29, 221 (1996)Google Scholar
  9. 9.
    Y. Zhang, G. Jin, Z. Yang, Microchim. Acta 4, 225 (2004)Google Scholar
  10. 10.
    D. Wei, X. Lin, L. Li, S. Shang, M.C. Yuen, G. Yan, X. Yu, Soft Matter 9, 2832 (2013)Google Scholar
  11. 11.
    P. Bober, J. Liu, K.S. Mikkonen, P. Ihalainen, M. Pesonen, C. Plumed-Ferrer, A. Wright, T. Lindfors, C. Xu, R. Latonen, Biomacromolecules 15, 3655 (2014)Google Scholar
  12. 12.
    B. Weng, A. Morrin, R. Shepherd, K. Crowley, A.J. Killard, P.C. Innis, G.G. Wallace, J.Mater. Chem. B 2, 793 (2014)Google Scholar
  13. 13.
    T. Qian, C. Yu, X. Zhou, P. Ma, S. Wu, L. Xu, J. Shen, Biosens. Bioelectron. 58, 237 (2014)Google Scholar
  14. 14.
    X. Wang, C. Yang, T. Wang, P. Liu, Electrochim. Acta 58, 193 (2011)Google Scholar
  15. 15.
    Z. Huang, Y. Song, X. Xu, X. Liu, ACS Appl. Mater. Interfaces 7, 25506 (2015)Google Scholar
  16. 16.
    Z. Xia, S. Wang, Y. Li, L. Jiang, H. Sun, S. Zhu, D.S. Su, G. Sun, J. Mater. Chem. A 1, 491 (2013)Google Scholar
  17. 17.
    Z. Xia, S. Wang, L. Jiang, H. Sun, G. Sun, J. Power Sources 256, 125 (2014)Google Scholar
  18. 18.
    M. Li, Z. Wei, L. Jiang, J. Mater. Chem. 18, 2276 (2008)Google Scholar
  19. 19.
    K. Leonavicius, A. Ramanaviciene, A. Ramanavicius, Langmuir 27, 10970 (2011)Google Scholar
  20. 20.
    C. Shen, Y. Sun, W. Yao, Y. Lu, Polymer 55, 2817 (2014)Google Scholar
  21. 21.
    L. Pan, H. Qiu, C. Dou, Y. Li, L. Pu, J. Xu, Y. Shi, Int. J. Mol. Sci. 11, 2636 (2010)Google Scholar
  22. 22.
    J.I. Lee, S.H. Cho, S.M. Park, J.K. Kim, J.K. Kim, J. Yu, Y.C. Kim, T.P. Russell, Nano Lett. 8, 2315 (2008)Google Scholar
  23. 23.
    G. Ćirić-Marjanović, S. Mentus, I. Pašti, N. Gavrilov, J. Krstić, J. Travas-Sejdic, L.T. Strover, J. Kopecká, Z. Morávková, M. Trchová, J. Stejskal, J. Phys. Chem. C 118, 14770 (2014)Google Scholar
  24. 24.
    J. Liu, J. An, Y. Ma, M. Li, R. Ma, J. Electrochem. Soc. 159, A828 (2012)Google Scholar
  25. 25.
    R.M.M. Abbaslou, J. Soltan, A.K. Dalai, Appl. Catal. A Gen. 2010, 379, 129Google Scholar
  26. 26.
    X. Li, M. Wan, Y. Wei, J. Shen, Z. Chen, J. Phys. Chem. B 110, 14623 (2006)Google Scholar
  27. 27.
    S.I. Cho, S.B. Lee, Acc. Chem. Res. 41, 699 (2008)Google Scholar
  28. 28.
    B. Schulz, I. Orgzall, I. Diez, B. Dietzel, Colloids Surf. A. 354, 368 (2010)Google Scholar
  29. 29.
    J. Liu, M. Wan, J. Mater. Chem. 11, 404 (2001)Google Scholar
  30. 30.
    A. Ishpal, Kaur, J. Appl. Phys. 113, 094504 (2013)Google Scholar
  31. 31.
    Y.J. Wang, C. Yang, P. Liu, Chem. Eng. J. 172, 1137 (2011)Google Scholar
  32. 32.
    X.M. Yang, Z.X. Zhu, T.Y. Dai, Y. Lu, Macromol. Rapid Commun. 26, 1736 (2005)Google Scholar
  33. 33.
    X.Q. Hu, Y. Lu, J.H. Liu, Macromol. Rapid Commun. 25, 1117 (2004)Google Scholar
  34. 34.
    W.S. Bai, F. Nie, J.B. Zheng, Q.L. Sheng, ACS Appl. Mater. Interfaces 6, 5439 (2014)Google Scholar
  35. 35.
    Y.S. Hsieh, B.D. Hong, C.L. Lee, Microchim. Acta 183, 905 (2016)Google Scholar
  36. 36.
    Y. Han, J.B. Zheng, S.Y. Dong, Electrochim. Acta 90, 35 (2013)Google Scholar
  37. 37.
    M. Shao, T. Yu, J.H. Odell, M. Jin, Y.N. Xia, Chem. Commun. 47, 6566 (2011)Google Scholar
  38. 38.
    J.S. Ye, C.W. Chen, C.L. Lee, Sens. Actuators B Chem. 208, 569 (2015)Google Scholar
  39. 39.
    J. Hu, Y. Liu, Langmuir 21, 2121 (2005)Google Scholar
  40. 40.
    Y. Li, E. Boone, M.A. El-Sayed, Langmuir 18, 4921 (2002)Google Scholar
  41. 41.
    S.W. Kim, M. Kim, W.Y. Lee, T. Hyeon, J. Am. Chem. Soc. 124, 7642 (2002)Google Scholar
  42. 42.
    Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Nature 418, 164 (2002)Google Scholar
  43. 43.
    A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102, 3757 (2002)Google Scholar
  44. 44.
    D. Kim, Y.W. Lee, S.B. Lee, S.W. Han, Angew. Chem. Int. Ed. 51, 159 (2012)Google Scholar
  45. 45.
    Y.C. Yu, Y.X. Zhao, T. Huang, H.F. Liu, Mater. Res. Bull. 45, 159 (2010)Google Scholar
  46. 46.
    A.R. Tao, S. Habas, P.D. Yang, Small 4, 310 (2008)Google Scholar
  47. 47.
    Y. Xia, Y.J. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2009)Google Scholar
  48. 48.
    W. Hong, P.Y. Bi, C.S. Shang, J. Wang, E.K. Wang, J. Mater. Chem. A 4, 4485 (2016)Google Scholar
  49. 49.
    N.S. Allen, K.S. Murray, R.J. Fleming, Synth. Met. 87, 237 (1997)Google Scholar
  50. 50.
    B. Lim, M. Jiang, P.H. Camargo, E.C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Science 324, 1302 (2009)Google Scholar
  51. 51.
    Y. Xue, X. Lu, Y. Xu, X. Bian, L. Kong, C. Wang, Polym. Chem. 1, 1602 (2010)Google Scholar
  52. 52.
    K. Ding, H. Jia, S. Wei et al., Ind. Eng. Chem. Res. 50, 7077 (2011)Google Scholar
  53. 53.
    Y.L. Zhou, R.H. Tian, J.F. Zhi, Biosens. Bioelectron. 22, 822 (2007)Google Scholar
  54. 54.
    G.T.S. How, A. Pandikumar, H.N. Ming, L.H. Ngee, Sci. Rep. 4, 5044 (2014)Google Scholar
  55. 55.
    C.L. Sun, H.H. Lee, J.M. Yang, C.C. Wu, Biosens. Bioelectron. 26, 3450 (2011)Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  1. 1.College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical ChemistryNorthwest UniversityXi’anChina
  2. 2.College of Food Science and TechnologyNorthwest UniversityXi’anChina

Personalised recommendations