Advertisement

Journal of the Iranian Chemical Society

, Volume 16, Issue 5, pp 1007–1018 | Cite as

Three-phase carrier-mediated hollow fiber microextraction based on deep eutectic solvent followed by HPLC–UV for determination of raloxifene and ethinylestradiol in pharmaceutical wastewater treatment plants

  • Shahram SeidiEmail author
  • Leila Alavi
  • Ali Jabbari
  • Maryam Shanehsaz
Original Paper

Abstract

Endangering of the aquatic organisms and humans health by entrance of the pharmaceuticals in hydrosphere is becoming an important growing problem in the world. Effluents from wastewater treatment plants (WWTPs) are considered one of the main disposal pathways and incoming load of different pharmaceuticals in hydrosphere. In the present work, a new carrier-mediated hollow fiber liquid phase microextraction (CM-HFLPME) based on deep eutectic solvent (DES) was combined with HPLC–UV and applied for determination of ethinylestradiol (EE) and raloxifene (RLX) in pharmaceutical wastewater samples. The target analytes were extracted from 17 mL of the basic solution with pH 11 into an organic phase, as the supported liquid membrane (SLM) impregnated in the pores of a hollow fiber, and then back-extracted into the acceptor phase locating into the lumen of the hollow fiber. SLM consisted of n-octanol containing N,N,N-cetyltrimethyl ammonium bromide (CTAB), as the carrier, and the acceptor phase contained a mixture of DES and HCl. The important factors including sample pH, extraction time, HCl concentration and CTAB amount were optimized using a central composite design (CCD). Under the optimized conditions, preconcentration factors of RLX and EE were found to be 86 and 53, respectively. The limits of detections (LODs), based on 3S/N, were found to be 5.0 ng/mL for RLX and 10 ng/mL for EE, respectively. The calibration curves of RLX and EE were linear within the ranges of 20–5000 ng/mL (r2 = 0.9980) and 30–5000 ng/mL (r2 = 0.9985), respectively. Relative standard deviation (RSD%) of RLX and EE, based on three replicates at the concentration of 100 ng/mL, was calculated 1.7% and 2.6%, respectively. Finally, the feasibility of the proposed method was successfully confirmed by extraction and determination of RLX and EE in pharmaceutical wastewaters.

Graphical abstract

Keywords

Deep eutectic solvent Carrier mediated Hollow fiber microextraction Pharmaceutical wastewater Raloxifene Ethinylestradiol 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided by K.N. Toosi University of Technology (Tehran, Iran).

References

  1. 1.
  2. 2.
    M. Heringa, Int. J. Clin. Pharmacol. Ther. 41, 331 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Boyack, S. Lookinland, S. Chasson, J. Am. Acad. Nurse Pract. 14, 150 (2002)CrossRefGoogle Scholar
  4. 4.
    S.M. Choi, S.D. Yoo, B.M. Lee, J. Toxicol. Environ. Health 7, 1 (2004)CrossRefGoogle Scholar
  5. 5.
    S. Nakamura, T.H. Sian, S. Daishima, J. Chromatogr. A 919, 275 (2001)CrossRefGoogle Scholar
  6. 6.
    A.C. Moffat, M.D. Osselton, B. Widdop, in Clarke’s Analysis of Drugs and Poisons, 4th edn., ed. by B.J. Watts (Pharmaceutical Press, London, 2005), p. 1362Google Scholar
  7. 7.
    P.E. Stackelberg, E.T. Furlong, M.T. Meyer, S.D. Zaugg, A.K. Henderson, D.B. Reissman, Sci. Total Environ. 329, 99 (2004)CrossRefGoogle Scholar
  8. 8.
    T. Heberer, Toxicol. Lett. 131, 5 (2002)CrossRefGoogle Scholar
  9. 9.
    J.C. Van De Steene, C.P. Stove, W.E. Lambert, Sci. Total Environ. 408, 3448 (2010)CrossRefGoogle Scholar
  10. 10.
    C.G. Daughton, T.A. Ternes, Environ. Health Perspect. 107, 907 (1999)CrossRefGoogle Scholar
  11. 11.
    U. Kotowska, J. Kapelewska, J. Sturgulewska, Environ. Sci. Pollut. Res. 21, 660 (2014)CrossRefGoogle Scholar
  12. 12.
    M.J.L. de Alda, D. Barceló, J. Chromatogr. A 911, 203 (2001)CrossRefGoogle Scholar
  13. 13.
    D. Bonazzi, V. Andrisano, R. Gatti, V. Cavrini, J. Pharm. Biomed. Anal. 13, 1321 (1995)CrossRefGoogle Scholar
  14. 14.
    L. Fotouhi. S. Seidi, F. Shahsavari, J. Iran. Chem. Soc. 13, 1289 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Ganjikhah. S. Shariati, E. Bozorgzadeh, J. Iran. Chem. Soc. 14, 763 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Hamedi, M.R. Hadjmohammadi, J. Iran. Chem. Soc. 14, 985 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Pedersen-Bjergaard, K.E. Rasmussen, Anal. Chem. 71, 2650 (1999)CrossRefGoogle Scholar
  18. 18.
    G.S. da Silva, D.L.D. Lima, V.I. Esteves, Environ. Sci. Pollut. Res. 24, 15748 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Ebrahimzadeh, A.A. Asgharinezhad, L. Adlnasab, N. Shekari, J. Sep. Sci. 35, 2040 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Yamini, C.T. Reimann, A. Vatanara, J. Jönsson, J. Chromatogr. A 57, 1124 (2006)Google Scholar
  21. 21.
    F. Chemat, M.A. Vian, G. Cravotto, Int. J. Mol. Sci. 13, 8615 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Moradi, Y. Yamini, B. Ebrahimpour, J. Iran. Chem. Soc. 11, 1087 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Tan, Z. Li, X. Mao, Y. Wan, H. Qiu, Anal. Methods 8, 3511 (2016)CrossRefGoogle Scholar
  24. 24.
    B. Tang, H. Zhang, K.H. Row, J. Sep. Sci. 38, 1053 (2015)CrossRefGoogle Scholar
  25. 25.
    G.-W. Yu, Q. Cheng, J. Nie, P. Wang, X.-J. Wang, Z.-G. Li, M.-R. Lee, Anal. Methods 9, 6777 (2017)CrossRefGoogle Scholar
  26. 26.
    Q. Zhang, K.D.O. Vigier, S. Royer, F. Jérôme, Chem. Soc. Rev. 41, 7108 (2012)CrossRefGoogle Scholar
  27. 27.
    B. Kudłak, K. Owczarek, J. Namieśnik, Environ. Sci. Pollut. Res. 22, 11975 (2015)CrossRefGoogle Scholar
  28. 28.
    M.M. Khataei, Y. Yamini, A. Nazaripour, M. Karimi, Talanta 178, 473 (2018)CrossRefGoogle Scholar
  29. 29.
    A. Hayyan, M.A. Hashim, F.S. Mjalli, M. Hayyan, I.M. AlNashef, Chem. Eng. Sci. 92, 81 (2013)CrossRefGoogle Scholar
  30. 30.
    A.P. Abbott, G. Capper, K.J. McKenzie, K.S. Ryder, J. Electroanal. Chem. 599, 288 (2007)CrossRefGoogle Scholar
  31. 31.
    X. Li, K.H. Row, J. Sep. Sci. 39, 3505 (2016)CrossRefGoogle Scholar
  32. 32.
    S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, J. Sep. Sci. 41, 966 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Alavi, S. Seidi, A. Jabbri, T. Baheri, New J. Chem. 41, 7038 (2017)CrossRefGoogle Scholar
  34. 34.
    H. Zeng, K. Qiao, X. Li, M. Yang, S. Zhang, R. Lu, J. Li, H. Gao, W. Zhou, J. Sep. Sci. 40, 4563 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Karimi, S. Dadfarnia, A.M.H. Shabani., F. Tamaddon, D. Azadi, Talanta 144, 648 (2015)CrossRefGoogle Scholar
  36. 36.
    T. Khezeli, A. Daneshfar, R. Sahraei, J. Chromatogr. A 1425, 25 (2015)CrossRefGoogle Scholar
  37. 37.
    E. Yilmaz, M. Soylak, Talanta 136, 170 (2015)CrossRefGoogle Scholar
  38. 38.
    V. Ferrone, S. Genovese, M. Carlucci, M. Tiecco, R. Germani, F. Preziuso, F. Epifano, G. Carlucci, V.A. Taddeo, Food Chem. 245, 578 (2018)CrossRefGoogle Scholar
  39. 39.
    M.A. Farajzadeh, M.R.A. Mogaddam, M. Aghanassab, Anal. Methods 8, 2576 (2016)CrossRefGoogle Scholar
  40. 40.
    W. Liu, K. Zhang, Y. Qin, J. Yu, Anal. Methods 9, 4184 (2017)CrossRefGoogle Scholar
  41. 41.
    L. Liu, T. Zhu, Anal. Methods 9, 4747 (2017)CrossRefGoogle Scholar
  42. 42.
    R.A. Zounr, M. Tuzen, N. Deligonul, M.Y. Khuhawar, Food Chem. 253, 277 (2018)CrossRefGoogle Scholar
  43. 43.
    M.R. Sohrabi, M. Emrarian, M. Javanbakht, J. Appl. Sci. 10, 1802 (2010)CrossRefGoogle Scholar
  44. 44.
    K. Basavaiah. U.R. Anil Kumar, K. Tharpa, K.B. Vinay, J. Chil. Chem. Soc. 53, 1635 (2008)CrossRefGoogle Scholar
  45. 45.
    K. Xu, Y. Wang, Y. Huang, N. Li, Q. Wen, Anal. Chim. Acta 864, 9 (2015)CrossRefGoogle Scholar
  46. 46.
    H.L. Rosano, K. Breindel, J.H. Schulman, A.J. Eydt, J. Colloid Interface Sci. 22, 58 (1966)CrossRefGoogle Scholar
  47. 47.
    X. Guo, B. Chen, M. He, B. Hu, X. Zhou, ‎J. Anal. At. Spectrom. 28, 1638 (2013)CrossRefGoogle Scholar
  48. 48.
    T.M. Rizzetti, M. Kemmerich, M.L. Martins, O.D. Prestes, M.B. Adaime, R. Zanella, Food Chem. 196, 25 (2016)CrossRefGoogle Scholar
  49. 49.
    E.K. Paleologos, D.L. Giokas, M.I. Karayannis, Trends Anal. Chem. 24, 426 (2005)CrossRefGoogle Scholar
  50. 50.
  51. 51.
    B. Ebrahimpour, Y. Yamini, S. Seidi, F. Rezaei, Anal. Methods 6, 2936 (2014)CrossRefGoogle Scholar
  52. 52.
    B. Chen, Y. Huang, M. He, B. Hu, J. Chromatogr. A 1305, 17 (2013)CrossRefGoogle Scholar
  53. 53.
    Q. Zhong, Y. Hu, Y. Hu, G. Li, J. Chromatogr. A 1241, 13 (2012)CrossRefGoogle Scholar
  54. 54.
    D.L.D. Lima, C.P. Silva, M. Otero, V.I. Esteves, Talanta 115, 980 (2013)CrossRefGoogle Scholar
  55. 55.
    A. González, J. Avivar, V. Cerdà, J. Chromatogr. A 1413, 1 (2015)CrossRefGoogle Scholar
  56. 56.
    O. Ros, A. Vallejo, L. Blanco-Zubiaguirre, M. Olivares, A. Delgado, N. Etxebarria, A. Prieto, Talanta 134, 247 (2015)CrossRefGoogle Scholar
  57. 57.
    X. Luo, G. Li, Y. Hu, Talanta 165, 377 (2017)CrossRefGoogle Scholar
  58. 58.
    C.-C. Chang, S.-D. Huang, Anal. Chim. Acta 662, 39 (2010)CrossRefGoogle Scholar
  59. 59.
    C.V. Antoniou, E.E. Koukouraki, E. Diamadopoulos, Water Environ. Res. 81, 664 (2009)CrossRefGoogle Scholar
  60. 60.
    J. Liu, X. Du, C. Zhang, Y. Lei, Q. Gao, Y. Li, Fresenius Environ. Bull. 20, 1075 (2011)Google Scholar
  61. 61.
    J.-L. Liu, C. Zhang, X.-J. Wang, T. Wang, Y. Li, Chem. J. Chin. U. 1, 007 (2012)Google Scholar
  62. 62.
    X. Xiao, Y. Yin, Y. Hu, G. Li, J. AOAC Int. 93, 849 (2010)Google Scholar

Copyright information

© Iranian Chemical Society 2019

Authors and Affiliations

  • Shahram Seidi
    • 1
    Email author
  • Leila Alavi
    • 1
  • Ali Jabbari
    • 1
  • Maryam Shanehsaz
    • 2
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryK. N. Toosi University of TechnologyTehranIran
  2. 2.Analytical Chemistry Research LaboratoryMobin Shimi Azma CompanyTehranIran

Personalised recommendations