Journal of the Iranian Chemical Society

, Volume 14, Issue 12, pp 2579–2590 | Cite as

A wide potential window aqueous supercapacitor based on LiMn2O4–rGO nanocomposite

  • S. Rasool Azari
  • Mohammad S. Rahmanifar
  • Maher F. El-Kady
  • Abolhassan Noori
  • Mir F. MousaviEmail author
  • Richard B. KanerEmail author
Original Paper


Aqueous supercapacitors based on neutral solutions have the advantages of high-ionic conductivity, being environmentally friendly, safe, and low cost. However, the operating potential window for most aqueous electrolytes is far lower than that of organic electrolytes that are commonly used in commercial supercapacitors. In this work, we report on the fabrication of a wide potential window, high-energy aqueous asymmetric supercapacitor, without sacrificing power, by using a nanostructured LiMn2O4/reduced graphene oxide (LMO–rGO) nanocomposite. We synthesized the uniformly distributed LMO in the LMO–rGO nanocomposite using a co-precipitation route followed by a low-temperature hydrothermal treatment. In a three-electrode cell setup, the specific capacitance of the LMO–rGO nanocomposite electrode at 1 A/g (1.2 mA/cm2) is 268.75 F/g (258 mF/cm2), which shows a dramatic improvement over the sum of the specific capacitances of pristine LMO (162.5 F/g) and pure rGO (29.94 F/g) electrodes in their relative ratios, when used alone. This finding suggests a synergistic coupling of LMO and rGO in the nanocomposite. We also assembled the LMO–rGO nanocomposite, as the positive electrode, with activated carbon, as the negative electrode, into an asymmetric cell configuration. The device shows an ultra-wide potential window of 2.0 V in a neutral aqueous Li2SO4 electrolyte, with a maximum energy density of 29.6 Wh/kg (which approaches the commercial lead-acid batteries), power density of up to 7408 W/kg, and an excellent cycle life (5% loss after 6000 cycles). These findings confirm that an LMO–rGO nanocomposite is a promising material to meet the demands of real world energy storage.


LiMn2O4 Nanocomposite Graphene Supercapacitor Hydrothermal synthesis Energy storage 



This work was made possible through financial support from Tarbiat Modares University Research Council (M.F.M.) and Nanotech Energy (R.B.K.).

Supplementary material

13738_2017_1192_MOESM1_ESM.docx (5.3 mb)
Supplementary material 1 (DOCX 5429 kb)

Supplementary material 2 (AVI 103900 kb)

Supplementary material 3 (AVI 5174 kb)


  1. 1.
    X. Dong, L. Chen, J. Liu, S. Haller, Y. Wang, Y. Xia, Sci. Adv. 2, 1 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Tsai, W. Nie, J.-C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M.A. Alam, G. Gupta, J. Lou, P.M. Ajayan, M.J. Bedzyk, M.G. Kanatzidis, A.D. Mohite, Nature 536, 312 (2016)CrossRefGoogle Scholar
  3. 3.
    C. Liu, C. Zhang, H. Song, C. Zhang, Y. Liu, X. Nan, G. Cao, Nano Energy 22, 290 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Gogotsi, Nature 509, 568 (2014)CrossRefGoogle Scholar
  5. 5.
    D. Larcher, J.-M. Tarascon, Nat. Chem. 7, 19 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Chem. Soc. Rev. 44, 3639 (2015)CrossRefGoogle Scholar
  7. 7.
    L.J. Wang, M.F. El-Kady, S. Dubin, J.Y. Hwang, Y. Shao, K. Marsh, B. McVerry, M.D. Kowal, M.F. Mousavi, R.B. Kaner, Adv. Energy Mater. 5, 1500786 (2015)CrossRefGoogle Scholar
  8. 8.
    L.-Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.-L. Zhao, X. Lin, X. Xu, Nat. Commun. 4, 2923 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Pendashteh, M.S. Rahmanifar, M.F. Mousavi, Ultrason. Sonochem. 21, 643 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Pendashteh, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Chem. Commun. 50, 1972 (2014)CrossRefGoogle Scholar
  11. 11.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1300816 (2014)CrossRefGoogle Scholar
  13. 13.
    D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Chem. Soc. Rev. 44, 1777 (2015)CrossRefGoogle Scholar
  14. 14.
    M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi, L. Chaney, A.T. Lech, R.B. Kaner, Proc. Natl. Acad. Sci. 112, 4233 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Cao, X. Lin, C. Zhang, C. Yang, Q. Zhang, W. Hu, M. Zheng, Q. Dong, RSC Adv. 4, 30150 (2014)CrossRefGoogle Scholar
  16. 16.
    F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347, 1246501 (2015)CrossRefGoogle Scholar
  17. 17.
    W. Sun, H. Liu, Y. Liu, G. Bai, W. Liu, S. Guo, X.-Z. Zhao, Nanoscale 7, 13173 (2015)CrossRefGoogle Scholar
  18. 18.
    M.-J. Lee, S. Lee, P. Oh, Y. Kim, J. Cho, Nano Lett. 14, 993 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Lee, Y. Oshima, E. Hosono, H. Zhou, K. Kim, H.M. Chang, R. Kanno, K. Takayanagi, ACS Nano 9, 626 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, D. Jia, Z. Peng, Y. Xia, G. Zheng, Nano Lett. 14, 1080 (2014)CrossRefGoogle Scholar
  21. 21.
    H.-G. Jung, M.W. Jang, J. Hassoun, Y.-K. Sun, B. Scrosati, Nat. Commun. 2, 516 (2011)CrossRefGoogle Scholar
  22. 22.
    S.J. Clark, D. Wang, A.R. Armstrong, P.G. Bruce, Nat. Commun. 7, 1 (2016)CrossRefGoogle Scholar
  23. 23.
    N. Cao, L. Wen, Z. Song, W. Meng, X. Qin, Electrochim. Acta 209, 235 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Wu, G. Hu, Z. Peng, Y. Cao, K. Du, Electrochim. Acta 196, 252 (2016)CrossRefGoogle Scholar
  25. 25.
    K. Wu, G. Hu, Y. Cao, Z. Peng, K. Du, Mater. Lett. 161, 178 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, L. Guo, Nanoscale 7, 8920 (2015)CrossRefGoogle Scholar
  27. 27.
    H. Peng, H. Xie, J.B. Goodenough, J. Power Sources 197, 310 (2012)CrossRefGoogle Scholar
  28. 28.
    B. Lang, B. Ziebarth, C. Elsässer, Chem. Mater. 27, 5040 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Pendashteh, M.F. Mousavi, M.A. Kiani, S. Kazemi, M.S. Rahmanifar, J. Iran. Chem. Soc. 9, 389 (2012)CrossRefGoogle Scholar
  30. 30.
    P. Kakvand, M.S. Rahmanifar, M.F. El-Kady, A. Pendashteh, M.A. Kiani, M. Hashemi, M. Najafi, A. Abbasi, M.F. Mousavi, R.B. Kaner, Nanotechnology 27, 315401 (2016)CrossRefGoogle Scholar
  31. 31.
    M.A. Kiani, M.S. Rahmanifar, M.F. El-Kady, R.B. Kaner, M.F. Mousavi, RSC Adv. 5, 50433 (2015)CrossRefGoogle Scholar
  32. 32.
    C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Nat. Commun. 6, 7345 (2015)CrossRefGoogle Scholar
  33. 33.
    K.V. Sreelakshmi, S. Sasi, A. Balakrishnan, N. Sivakumar, A.S. Nair, S.V. Nair, K.R.V. Subramanian, Energy Technol. 2, 257 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Zhuo, S. Wan, C. He, Q. Zhang, C. Li, D. Gui, C. Zhu, H. Niu, J. Liu, J. Power Sources 247, 721 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Li, X. Zhang, R. Peng, Y. Huang, L. Guo, Y. Qi, RSC Adv. 6, 54866 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Xu, B. Cheng, Y. Wang, L. Zheng, X. Duan, X. Wang, J. Yang, Y. Qian, Int. J. Electrochem. Sci. 7, 10627 (2012)Google Scholar
  37. 37.
    Y.-G. Wang, Y.-Y. Xia, Electrochem. Commun. 7, 1138 (2005)CrossRefGoogle Scholar
  38. 38.
    B. Lin, Q. Yin, H. Hu, F. Lu, H. Xia, J. Solid State Chem. 209, 23 (2014)CrossRefGoogle Scholar
  39. 39.
    B.J. Liddle, S.M. Collins, B.M. Bartlett, Energy Environ. Sci. 3, 1339 (2010)CrossRefGoogle Scholar
  40. 40.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  41. 41.
    I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 73 (2010)CrossRefGoogle Scholar
  42. 42.
    S.-M. Bak, K.-W. Nam, C.-W. Lee, K.-H. Kim, H.-C. Jung, X.-Q. Yang, K.-B. Kim, J. Mater. Chem. 21, 17309 (2011)CrossRefGoogle Scholar
  43. 43.
    K.-Y. Jo, S.-Y. Han, J.M. Lee, I.Y. Kim, S. Nahm, J.-W. Choi, S.-J. Hwang, Electrochim. Acta 92, 188 (2013)CrossRefGoogle Scholar
  44. 44.
    R. Baddour-Hadjean, J.-P. Pereira-Ramos, Chem. Rev. 110, 1278 (2010)CrossRefGoogle Scholar
  45. 45.
    H.-C. Youn, S.-M. Bak, M.-S. Kim, C. Jaye, D.A. Fischer, C.-W. Lee, X.-Q. Yang, K.C. Roh, K.-B. Kim, Chemsuschem 8, 1875 (2015)CrossRefGoogle Scholar
  46. 46.
    C.V. Ramana, M. Massot, C.M. Julien, Surf. Interface Anal. 37, 412 (2005)CrossRefGoogle Scholar
  47. 47.
    T. Wu, X. Wang, H. Qiu, J. Gao, W. Wang, Y. Liu, J. Mater. Chem. 22, 4772 (2012)CrossRefGoogle Scholar
  48. 48.
    J. Lu, C. Zhou, Z. Liu, K.S. Lee, L. Lu, Electrochim. Acta 212, 553 (2016)CrossRefGoogle Scholar
  49. 49.
    P. Chen, H. Wu, S. Huang, Y. Zhang, Ceram. Int. 42, 10498 (2016)CrossRefGoogle Scholar
  50. 50.
    X. Zhu, X. Wu, T.N.L. Doan, Y. Tian, H. Zhao, P. Chen, J. Power Sources 326, 498 (2016)CrossRefGoogle Scholar
  51. 51.
    A. Tron, Y.D. Park, J. Mun, J. Power Sources 325, 360 (2016)CrossRefGoogle Scholar
  52. 52.
    M.A. Kiani, M.F. Mousavi, M.S. Rahmanifar, Int. J. Electrochem. Sci. 6, 2581 (2011)Google Scholar
  53. 53.
    A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Electrochim. Acta 88, 347 (2013)CrossRefGoogle Scholar
  54. 54.
    Y.-P. Lin, N.-L. Wu, J. Power Sources 196, 851 (2011)CrossRefGoogle Scholar
  55. 55.
    X. Yang, F. Qu, H. Niu, Q. Wang, J. Yan, Z. Fan, Electrochim. Acta 180, 287 (2015)CrossRefGoogle Scholar
  56. 56.
    F.X. Wang, S.Y. Xiao, Y.S. Zhu, Z. Chang, C.L. Hu, Y.P. Wu, R. Holze, J. Power Sources 246, 19 (2014)CrossRefGoogle Scholar
  57. 57.
    H. Manjunatha, K.C. Mahesh, G.S. Suresh, T.V. Venkatesha, Electrochim. Acta 56, 1439 (2011)CrossRefGoogle Scholar
  58. 58.
    S. Chen, Z. Chen, C. Cao, Electrochim. Acta 199, 51 (2016)CrossRefGoogle Scholar
  59. 59.
    W. Tang, Y. Hou, F. Wang, L. Liu, Y. Wu, K. Zhu, Nano Lett. 13, 2036 (2013)CrossRefGoogle Scholar

Copyright information

© Iranian Chemical Society 2017

Authors and Affiliations

  • S. Rasool Azari
    • 1
  • Mohammad S. Rahmanifar
    • 2
  • Maher F. El-Kady
    • 3
    • 4
  • Abolhassan Noori
    • 1
  • Mir F. Mousavi
    • 1
    • 3
    Email author
  • Richard B. Kaner
    • 3
    • 5
    Email author
  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran
  2. 2.Faculty of Basic SciencesShahed UniversityTehranIran
  3. 3.Department of Chemistry and Biochemistry and California NanoSystems InstituteUniversity of California, Los Angeles (UCLA)Los AngelesUSA
  4. 4.Department of Chemistry, Faculty of ScienceCairo UniversityGizaEgypt
  5. 5.Department of Materials Science and EngineeringUCLALos AngelesUSA

Personalised recommendations