Iranian Polymer Journal

, Volume 28, Issue 11, pp 921–931 | Cite as

Development of gelatin/chitosan membranes with controlled microstructure by electrospinning

  • Víctor Perez-Puyana
  • Manuel FelixEmail author
  • Leticia Cabrera
  • Alberto Romero
  • Antonio Guerrero
Original Research


Electrospun membranes obtained through electrospinning are very promising since they exhibit a high porosity and surface area. The present study proposes the use of gelatin (GL) made from fish by-products in combination with a polycationic polysaccharide (chitosan, CH) and a water-soluble polymer (polyethylene oxide, PEO) to obtain unitary, binary or even ternary nanofibrous membranes which would be suitable in different applications, such as biomaterials or filtration industry. This work aims to correlate the microstructure of final ternary membranes (GL–CH–PEO) and the properties of the solutions by evaluating their viscosity obtained through rheological characterization, as well as their conductivity and density, which are key parameters to obtain a suitable electrospinning processing technique. The results indicate that membranes with a fairly homogeneous distribution of fibers can be obtained using either biopolymer/PEO binary solutions (i.e., 00/85/30 or 05/00/35 systems) or even ternary solutions (05/85/35 or 05/85/35) with diameters shorter than 200 nm. In this sense, physicochemical characterization of the polymer/biopolymer solutions used for electrospinning processing technique is essential for the understanding of this technique.


Bio-based Chitosan Electrospinning Nanofibers Membranes 



This work is part of a research project, with reference CTQ2015-71164-P, sponsored by “Ministerio de Economía y Competitividad” from Spanish Government (MINECO/FEDER, EU). The authors gratefully acknowledge their financial support. The authors also acknowledge the Microscopy Service (CITIUS-Universidad de Sevilla) for providing full access and assistance to the JEOL 6460-LV. The authors also acknowledge the University of Seville for the financial support to Victor Perez-Puyana and Manuel Felix supported by VPPI-US.


  1. 1.
    Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813CrossRefGoogle Scholar
  2. 2.
    Stevens DM, Shu JY, Reichert M, Roy A (2017) Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration. Ind Eng Chem Res 56:10526–10551CrossRefGoogle Scholar
  3. 3.
    Zohora FT, Azim AYMA (2014) Biomaterials as porous scaffolds for tissue engineering applications: a review. Eur Sci J 10:186–209Google Scholar
  4. 4.
    Kadam VV, Wang L, Padhye R (2018) Electrospun nanofibre materials to filter air pollutants—a review. J Ind Text 47:2253–2280CrossRefGoogle Scholar
  5. 5.
    Meng J, Song L, Meng J, Kong H, Zhu G, Wang C, Xu L, Xie S, Xu H (2006) Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro. J Biomed Mater Res Part A 79A:298–306CrossRefGoogle Scholar
  6. 6.
    Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A (2018) Development of PVA/gelatin nanofibrous scaffolds for tissue engineering via electrospinning. Mater Res Express 5:035401CrossRefGoogle Scholar
  7. 7.
    Escobar IC, Hong S, Randall AA (2000) Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes. J Memb Sci 175:1–17CrossRefGoogle Scholar
  8. 8.
    Moydeen AM, Padusha MS, Aboelfetoh EF, Al-Deyab SS, El-Newehy MH (2018) Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: kinetics and in vitro release study. Int J Biol Macromol 116:1250–1259CrossRefGoogle Scholar
  9. 9.
    Nouri M, Mokhtari J, Rostamloo M (2013) Electrospun poly(ɛ-caprolactone)/nanoclay nanofibrous mats for tissue engineering. Fibers Polym 14:957–964CrossRefGoogle Scholar
  10. 10.
    Martín-Alfonso JE, Cuadri AA, Greiner A (2018) The combined effect of formulation and pH on properties of polyethylene oxide composite fiber containing egg albumen protein. Int J Biol Macromol 112:996–1004CrossRefGoogle Scholar
  11. 11.
    Nakamura EM, Cordi L, Almeida GS, Duran N, Mei LI (2005) Study and development of LDPE/starch partially biodegradable compounds. J Mater Process Technol 162–163:236–241CrossRefGoogle Scholar
  12. 12.
    Huang X, Netravali A (2007) Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Compos Sci Technol 67:2005–2014CrossRefGoogle Scholar
  13. 13.
    Ji W, Zhang C, Ji H (2017) Purification, identification and molecular mechanism of two dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from Antarctic krill (Euphausia superba) protein hydrolysate. J Chromatogr B 1064:56–61CrossRefGoogle Scholar
  14. 14.
    Khamforoush M, Hatami T, Mahjob M, Dabirian F, Zandi A (2014) Performance evaluation of modified rotating-jet electrospinning method by investigating the effect of collector size on the nanofibers alignment. Iran Polym J 23:569–580CrossRefGoogle Scholar
  15. 15.
    Sánchez P, Pedraz JL, Orive G (2017) Biologically active and biomimetic dual gelatin scaffolds for tissue engineering. Int J Biol Macromol 98:486–494CrossRefGoogle Scholar
  16. 16.
    Pu C, He J, Cui S, Gao W (2014) Fabrication of nanofibers by a modified air-jet electrospinning method. Iran Polym J 23:13–25CrossRefGoogle Scholar
  17. 17.
    Gomes SR, Rodrigues G, Martins GG, Henriques CM, Silva JC (2013) In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Mater Sci Eng C 33:1219–1227CrossRefGoogle Scholar
  18. 18.
    Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352CrossRefGoogle Scholar
  19. 19.
    Zhang CX, Yuan XY, Wu LL, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41:423–432CrossRefGoogle Scholar
  20. 20.
    Fu R, Yao K, Zhang Q, Jia D, Zhao J, Chi Y (2017) Collagen hydrolysates of skin shavings prepared by enzymatic hydrolysis as a natural flocculant and their flocculating property. Appl Biochem Biotechnol 182:55–66CrossRefGoogle Scholar
  21. 21.
    Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I: colligative properties. J Chem Phys 51:924–933CrossRefGoogle Scholar
  22. 22.
    Wannatong L, Sirivat A, Supaphol P (2004) Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int 53:1851–1859CrossRefGoogle Scholar
  23. 23.
    McClements DJ (2004) Food emulsions: principles, practice and techniques, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  24. 24.
    Pakravan M, Heuzey MC, Ajji A (2011) A fundamental study of chitosan/PEO electrospinning. Polymer 52:4813–4824CrossRefGoogle Scholar
  25. 25.
    Barnes HA (2000) A handbook of elementary rheology. University of Wales, Institute of Non-Newtonian Fluid Mechanics, WalesGoogle Scholar
  26. 26.
    Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular-weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647CrossRefGoogle Scholar
  27. 27.
    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co., SingaporeCrossRefGoogle Scholar
  28. 28.
    Tiwari SK, Venkatraman SS (2012) Importance of viscosity parameters in electrospinning of monolithic and core–shell fibers. Mater Sci Eng C 32:1037–1042CrossRefGoogle Scholar
  29. 29.
    Chen Z, Mo X, Qing F (2007) Electrospinning of collagen–chitosan complex. Mater Lett 61:3490–3494CrossRefGoogle Scholar
  30. 30.
    Queiroz MF, Melo KRT, Sabry DA, Sassaki G, Rocha H (2015) Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 13:141–158CrossRefGoogle Scholar
  31. 31.
    Wen SJ, Richardson TJ, Ghantous DI, Striebel KA, Ross PN, Cairns EJ (1996) FTIR characterization of PEO + LiN (CF3SO2)2 electrolytes LiTFSI) s o ~ Li. J Electroanal Chem 408:113–118CrossRefGoogle Scholar
  32. 32.
    Cebi N, Durak MZ, Toker OS, Sagdic O, Arici M (2016) An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chem 190:1109–1115CrossRefGoogle Scholar
  33. 33.
    Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surfaces A Physicochem Eng Asp 313–314:183–188CrossRefGoogle Scholar
  34. 34.
    Huang J, Chang PR, Dufresne A (2014) In: Huang J, Chang PR, Lin N, Dufresne A (eds) Polysaccharide-based nanocrystals: chemistry and applications. Wiley, GermanyGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería QuímicaUniversidad de Sevilla, Facultad de QuímicaSevilleSpain
  2. 2.Departamento de Ingeniería QuímicaUniversidad de Sevilla, Escuela Politécnica SuperiorSevilleSpain
  3. 3.Departamento de Ingeniería QuímicaUniversidad de Sevilla, Facultad de FísicaSevilleSpain

Personalised recommendations