Advertisement

Rheological behavior of well-dispersed polypropylene/halloysite nanotube composites prepared by water-assisted mixing extrusion

  • Yu-Xiao Huang
  • Han-Xiong HuangEmail author
Original Research
  • 13 Downloads

Abstract

Composites of polypropylene (PP) with 5 wt% halloysite nanotubes (HNTs) were prepared by conventional extrusion and water-assisted mixing extrusion, respectively. Transmission electron microscopy showed reduced aggregation of the HNTs in the composites prepared by injection of water during extrusion, with more efficient dispersion of the HNTs. The shear rheological behavior was systematically investigated to understand the effect of the HNT dispersion on the structure of nanocomposites prepared with water injection. The application of small amplitude oscillation shear at different temperatures led to an obvious increase in the storage modulus and complex viscosity of the composites prepared with water injection; and the viscoelastic properties were not affected by temperature. In using the modified Krieger–Dougherty model, the enhanced shear viscosity was correlated with the absorption of more polymer layers on the surface of the HNTs. Furthermore, the results of start-up flow tests showed that the PP/HNT nanocomposites prepared with water injection exhibited larger overshoots at various applied shear rates. Finally, the reversal flow responses of the nanocomposites were interpreted in terms of evolution of the microstructure during the rest period through a dynamic model. In this study, two competitive kinetic constants, namely, the build-up and breakdown coefficients in the dynamic model, were considered to be related to the interaction of PP-HNTs. Thus, it could be deduced from the model that due to the increased build-up coefficient of the composites with water injection, the structural parameter was more rapidly recovered to its initial state.

Keywords

Nanocomposites Water injection Shear rheology Polymer/fillers interaction Structure model 

Notes

Acknowledgements

Financial support provided by the National Natural Science Foundation of China (21374033) and Guangdong Provincial Natural Science Foundation (2016A030308018) is gratefully acknowledged. Thanks also go to the anonymous reviewers for their extremely helpful and constructive comments and suggestions on this work.

References

  1. 1.
    Yin XC, Li S, Wang L, He G, Yang ZT (2017) Nanocomposites of polypropylene and halloysite nanotubes prepared by a novel vane mixer: morphology, thermal, mechanical and rheological properties. Polym Korea 41:163–172CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Tang AD, Yang HM (2016) Applications and interfaces of halloysite nanocomposites. J Appl Clay Sci 119:8–17CrossRefGoogle Scholar
  3. 3.
    Rajan KP, Al-Ghamdi A, Thomas SP, Gopanna A, Chavali M (2017) Dielectric analysis of polypropylene (PP) and polylactic acid (PLA) blends reinforced with halloysite nanotubes. J Thermoplast Compos 31:1042–1053CrossRefGoogle Scholar
  4. 4.
    Pal P, Kundu MK, Malas A, Das CK (2014) Compatibilizing effect of halloysite nanotubes in polar-nonpolar hybrid system. J Appl Polym Sci 13:39587Google Scholar
  5. 5.
    Lecouvet B, Sclavons M, Bourbigot S, Devaux J, Bailly C (2011) Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer 52:4284–4295CrossRefGoogle Scholar
  6. 6.
    Rousseaux DDJ, Sallem Idrissi N, Baudouin AC, Devaux J, Godard P, Marchand-Brynaert J, Sclavons M (2011) Water-assisted extrusion of polypropylene/clay nanocomposites: a comprehensive study. Polymer 52:443–451CrossRefGoogle Scholar
  7. 7.
    Lee S, Yoo J, Lee JW (2015) Water-assisted extrusion of polypropylene/clay nanocomposites in high shear condition. J Ind Eng Chem 31:317–322CrossRefGoogle Scholar
  8. 8.
    Yu ZZ, Hu GH, Varlet J, Dasari A, Ma YW (2005) Water-assisted melt compounding of nylon-6/pristine montmorillonite nanocomposites. J Polym Sci Part B Polym Phys 43:1100–1112CrossRefGoogle Scholar
  9. 9.
    Lee N, Lee S (2018) Water-assisted extrusion of bio-based PETG/clay nanocomposites. Korea Aust Rheol J 30:47–53CrossRefGoogle Scholar
  10. 10.
    Stoclet G, Sclavons M, Lecouvet B, Devaux J, Van Velthem P, Boborodea A, Bourbigot S, Sallem-Idrissi N (2014) Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance. RSC Adv 4:57553–57563CrossRefGoogle Scholar
  11. 11.
    Touchaleaume F, Soulestin J, Sclavons M, Devaux J, Lacrampe MF, Krawczak P (2011) One-step water-assisted melt-compounding of polyamide 6/pristine clay nanocomposites: An efficient way to prevent matrix degradation. Polym Degrad Stabil 96:1890–1900CrossRefGoogle Scholar
  12. 12.
    Charlon S, Follain N, Chappey C, Dargent E, Soulestin J, Sclavons M, Marais S (2015) Improvement of barrier properties of bio-based polyester nanocomposite membranes by water-assisted extrusion. J Membr Sci 496:185–198CrossRefGoogle Scholar
  13. 13.
    Del Giudice F, Shen AQ (2017) Shear rheology of graphene oxide dispersions. Curr Opin Chem Eng 16:23–30CrossRefGoogle Scholar
  14. 14.
    Hernandez Y, Lozano T, Morales-Cepeda AB, Navarro-Pardo F, Angeles ME, Morales-Zamudio L, Melo-Banda JA, Sanchez-Valdes S, Martinez-Colunga G, Rodriguez F (2019) Stearic acid as interface modifier and lubricant agent of the system: polypropylene/calcium carbonate nanoparticles. Polym Eng Sci 59:E279–E285CrossRefGoogle Scholar
  15. 15.
    Zare Y, Rhee KY (2019) Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time. Compos B 156:100–107CrossRefGoogle Scholar
  16. 16.
    Wang Y, Cheng YX, Chen JX, Wu DF, Qiu YX, Yao X, Zhou YN, Chen C (2015) Percolation networks and transient rheology of polylactide composites containing graphite nanosheets with various thicknesses. Polymer 67:216–226CrossRefGoogle Scholar
  17. 17.
    Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46:8641–8660CrossRefGoogle Scholar
  18. 18.
    Hassan E, Miroslav G (2010) Linear and nonlinear rheology of polymer/layered silicate nanocomposites. J Rheol 54:539–562CrossRefGoogle Scholar
  19. 19.
    Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW (2007) Quantifying dispersion of layered nanocomposites via melt rheology. J Rheol 51:429–450CrossRefGoogle Scholar
  20. 20.
    Letwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Non Newton Fluid Mech 141:167–179CrossRefGoogle Scholar
  21. 21.
    Xu CJ, Chen JX, Wu DF, Chen Y, Lv QL, Wang MQ (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property relation study. Carbohyd Polym 146:58–66CrossRefGoogle Scholar
  22. 22.
    Wu DF, Wu L, Zhang M, Zhao YL (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stabil 93:1577–1584CrossRefGoogle Scholar
  23. 23.
    Zhu JH, Wei SY, Ryu J, Budhathoki M, Liang G, Guo ZH (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948CrossRefGoogle Scholar
  24. 24.
    Giovino M, Pribyl J, Benicewicz B, Kumar S, Schadler L (2017) Linear rheology of polymer nanocomposites with polymer-grafted nanoparticles. Polymer 131:104–110CrossRefGoogle Scholar
  25. 25.
    Momani B, Sen M, Endoh M, Wang XL, Koga T, Winter HH (2016) Temperature dependent intercalation and self-exfoliation of clay/polymer nanocomposite. Polymer 93:204–212CrossRefGoogle Scholar
  26. 26.
    Guo YC, Yang K, Zuo XH (2016) Effects of clay platelets and natural nanotubes on mechanical properties and gas permeability of poly (lactic acid) nanocomposites. Polymer 83:246–259CrossRefGoogle Scholar
  27. 27.
    Singh VP, Vimal KK, Kapur GS, Sharma S, Choudhary V (2016) High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. J Polym Res 23:43CrossRefGoogle Scholar
  28. 28.
    Lee KS, Chang YW (2013) Thermal, mechanical, and rheological properties of poly(ɛ-caprolactone)/halloysite nanotube nanocomposites. J Appl Polym Sci 128:2807–2816CrossRefGoogle Scholar
  29. 29.
    Akhlaghi O, Akbulut O, Menceloglu YZ (2015) Shear and extensional rheological characterization of poly(acrylonitrile)/halloysite nanocomposite solutions. Eur Polym J 73:17–25CrossRefGoogle Scholar
  30. 30.
    Wang B, Huang HX (2013) Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stabil 98:1601–1608CrossRefGoogle Scholar
  31. 31.
    Wang YK, Xu CJ, Wu DF, Xie WY, Wang K, Xia QR, Yang H (2018) Rheology of the cellulose nanocrystals filled poly(ε-caprolactone) biocomposites. Polymer 140:167–178CrossRefGoogle Scholar
  32. 32.
    Hassanabadi HM, Rodrigue D (2012) Relationships between linear and nonlinear shear response of polymer nanocomposites. Rheol Acta 51:991–1005CrossRefGoogle Scholar
  33. 33.
    Tong J, Huang HX, Wu M (2016) Facile green fabrication of well dispersed poly(vinylidene fluoride)/graphene oxide nanocomposites with improved properties. Compos Sci Technol 129:183–190CrossRefGoogle Scholar
  34. 34.
    Aloui M, Soulestin J, Lacrampe MF, Krawczak P, Rousseaux D, Marchand-Brynaert J, Devaux J, Quievy N, Sclavons M (2009) A new elaboration concept of polypropylene/unmodified montmorillonite nanocomposites by reactive extrusion based on direct injection of polypropylene aqueous suspensions. Polym Eng Sci 49:2276–2285CrossRefGoogle Scholar
  35. 35.
    Chow WS, Ishak ZAM, Karger-Kocsis J (2005) Morphological and rheological properties of polyamide 6/poly(propylene)/organoclay nanocomposites. Macromol Mater Eng 290:122–127CrossRefGoogle Scholar
  36. 36.
    Wu DF, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ɛ-caprolactone) composites. J Polym Sci Part B Polym Phys 45:3137–3147CrossRefGoogle Scholar
  37. 37.
    Wu DF, Wu LF, Zhang M, Wu L (2007) Effect of epoxy resin on rheology of polycarbonate/clay nanocomposites. Eur Polym J 43:1635–1644CrossRefGoogle Scholar
  38. 38.
    Song YS (2006) Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites. Rheol Acta 46:231–238CrossRefGoogle Scholar
  39. 39.
    Brady JF (1993) The rheological behavior of concentrated colloidal dispersions. J Chem Phys 99:567–581CrossRefGoogle Scholar
  40. 40.
    Alig I, Potschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53:4–28CrossRefGoogle Scholar
  41. 41.
    Kagarise C, Xu JH, Wang YR, Mahboob M, Koelling KW, Bechtel SE (2010) Transient shear rheology of carbon nanofiber/polystyrene melt composites. J Non Newton Fluid Mech 165:98–109CrossRefGoogle Scholar
  42. 42.
    Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196CrossRefGoogle Scholar
  43. 43.
    Yziquel F, Carreau PJ, Moan M, Tanguy PA (1999) Rheological modeling of concentrated colloidal suspensions. J Non Newton Fluid Mech 86:133–155CrossRefGoogle Scholar
  44. 44.
    Huang X-Y, Huang H-X (2019) Viscoelastic behavior and constitutive modeling of PP/HNT composites prepared by water‐assisted extrusion. Polym Eng Sci 59(8):1585–1592CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2019

Authors and Affiliations

  1. 1.Laboratory for Micro Molding and Polymer Rheology, The Key Laboratory of Polymer Processing Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhouChina

Personalised recommendations