Advertisement

Poly(vinyl butyral)/zeolitic imidazole framework-8/poly(vinyl alcohol) thin-film nanocomposite nanofiltration membrane: synthesis and characterization

  • Maryam Shafiei
  • Morteza HajianEmail author
Original Research
  • 14 Downloads

Abstract

Zeolitic imidazole framework-8 (ZIF-8) was synthesized and its structure was investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffractometry methods. Poly(vinyl butyral) (PVB)/ZIF-8 nanocomposite membranes as substrate were prepared with different percentages of ZIF-8 nanoparticles. Then, a thin layer of poly(vinyl alcohol) was created by coating method and cross-linked with glutaraldehyde (GA). As a result, thin-film nanocomposite (TFN) nanofiltration membranes were obtained. The TFN membranes were characterized by SEM, FTIR, atomic force microscopy, and contact angle measurement. The effects of incorporating ZIF-8 on membrane performance were investigated. As amount of ZIF-8 in the substrate was increased, water flux increased due to increasing porosity, and because of increasing hydrophilicity and negative charge of membrane surface fouling decreased. Thereby, the TFN membrane with ZIF-8 at 3% showed the highest water flux and the least fouling because of increasing porosity. As the concentration of PVA solution and GA was increased, the flux decreased and rejection increased. The PVB/(ZIF-8 3%) substrate membrane with PVA (1%) and GA (5%) cured at the temperature of 100 °C for 30 min resulted in the optimum balance of flux and rejection. For TFN membranes prepared under optimum conditions, the average rejection of Congo red dye was 98% and pure water flux was about 195 L/m2 h.

Keywords

Thin-film nanocomposite (TFN) Nanofiltration membrane (NF) Poly(vinyl alcohol) (PVA) Porous nanoparticles Zeolitic imidazolate framework-8 (ZIF-8) 

Notes

Acknowledgements

The authors would like to appreciate the University of Isfahan for financial support this work.

Supplementary material

13726_2019_732_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1558 kb)

References

  1. 1.
    Pendergast M, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971CrossRefGoogle Scholar
  2. 2.
    Ali A, Tufa RA, Macedonio F, Curcio E, Drioli E (2018) Membrane technology in renewable-energy-driven desalination. Renew Sust Energy Rev 81:1–21CrossRefGoogle Scholar
  3. 3.
    Subramani A, Jacangelo JG (2015) Emerging desalination technologies for water treatment: a critical review. Water Res 75:164–187CrossRefGoogle Scholar
  4. 4.
    Haveri JH, Murthy ZVP (2016) A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379:137–154CrossRefGoogle Scholar
  5. 5.
    Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N (2015) Nanofiltration membranes review: recent advances and future prospects. Desalination 356:226–254CrossRefGoogle Scholar
  6. 6.
    Zhou D, Zhu L, Fu Y, Zhu M, Xue L (2015) Development of lower cost seawater desalination processes using nanofiltration technologies: a review. Desalination 376:109–116CrossRefGoogle Scholar
  7. 7.
    Oatley-Radcliffe DL, Walters M, Ainscough TJ, Williams PM, Mohammad AW, Hilal N (2017) Nanofiltration membranes and processes: a review of research trends over the past decade. J Water Process Eng 19:164–171CrossRefGoogle Scholar
  8. 8.
    Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275CrossRefGoogle Scholar
  9. 9.
    Li W, ZhangY Li Q, Zhang G (2015) Metal–organic framework composite membranes: synthesis and separation applications. Chem Eng Sci 135:232–257CrossRefGoogle Scholar
  10. 10.
    Bolto B, Tran T, Hoang M, Xie Z (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969–981CrossRefGoogle Scholar
  11. 11.
    Baroña GNB, Choi M, Jung B (2012) High permeate flux of PVA/PSf thin film composite nanofiltration membrane with aluminosilicate single-walled nanotubes. J Colloid Interface Sci 386:189–197CrossRefGoogle Scholar
  12. 12.
    Gohil JM, Ray P (2009) Polyvinyl alcohol as the barrier layer in thin film composite nanofiltration membranes: preparation, characterization, and performance evaluation. J Colloid Interface Sci 338:121–127CrossRefGoogle Scholar
  13. 13.
    Misdan N, Lau WJ, Ismail AF, Matsuura T (2013) Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics. Desalination 329:9–18CrossRefGoogle Scholar
  14. 14.
    Zanjanijam AR, Hajian M, Koohmareh GA (2014) Improving the thermal and mechanical properties of poly(vinyl butyral) through the incorporation of acid-treated single-walled carbon nanotubes. J Appl Polym Sci 131:40481CrossRefGoogle Scholar
  15. 15.
    Gotoh M, Tamiya E, Karube I (1993) Preparation and performance of poly(vinyl butyral) membrane for ultrafiltration. J Appl Polym Sci 48:67–73CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Li H, Li H, Li R, Xiao C (2006) Preparation and characterization of modified polyvinyl alcohol ultrafiltration membranes. Desalination 192:214–223CrossRefGoogle Scholar
  17. 17.
    Peng Y, Sui Y (2006) Compatibility research on PVC/PVB blended membranes. Desalination 196:13–21CrossRefGoogle Scholar
  18. 18.
    Ma X, Sun Q, Su Y, Wang Y, Jiang Z (2007) Antifouling property improvement of poly(vinyl butyral) ultrafiltration membranes through acid treatment. Sep Purif Technol 54:220–226CrossRefGoogle Scholar
  19. 19.
    Fu X, Matsuyama H, Nagai H (2008) Structure control of asymmetric poly(vinyl butyral)-TiO2 composite membrane prepared by nonsolvent induced phase separation. J Appl Polym Sci 108:713–723CrossRefGoogle Scholar
  20. 20.
    Qiu YR, Rahman NA, Matsuyama H (2008) Preparation of hydrophilic poly(vinyl butyral)/Pluronic F127 blend hollow fiber membrane via thermally induced phase separation. Sep Purif Technol 61:1–8CrossRefGoogle Scholar
  21. 21.
    Qiu YR, Matsuyama H (2010) Preparation and characterization of poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation with diluent polyethylene glycol 200. Desalination 257:117–123CrossRefGoogle Scholar
  22. 22.
    Kitaura T, Fadzlina WN, Ohmukai Y, Maruyama T, Matsuyama H (2013) Preparation and characterization of several types of polyvinyl butyral hollow fiber membranes by thermally induced phase separation. J Appl Polym Sci 127:4072–4078CrossRefGoogle Scholar
  23. 23.
    Lang WZ, Shen JP, Zhang YX, Yu YH, Guo YJ, Liu CX (2013) Preparation and characterizations of charged poly(vinyl butyral) hollow fiber ultrafiltration membranes with perfluorosulfonic acid as additive. J Membr Sci 430:1–10CrossRefGoogle Scholar
  24. 24.
    Lang WZ, Shen JP, Wei YT, Wu QY, Wang J, Guo YJ (2013) Precipitation kinetics, morphologies, and properties of poly(vinyl butyral) hollow fiber ultrafiltration membranes with respect to polyvinylpyrrolidone molecular weight. Chem Eng J 225:25–33CrossRefGoogle Scholar
  25. 25.
    Wang J, Lang WZ, Xu HP, Zhang X, Guo YJ (2015) Improved poly(vinyl butyral) hollow fiber membranes by embedding multi-walled carbon nanotube for the ultrafiltrations of bovine serum albumin and humic acid. Chem Eng J 260:90–98CrossRefGoogle Scholar
  26. 26.
    Cui Z, Li W, Zeng H, Tang X, Zhang J, Qin S, Li J (2019) Fabricating PVDF hollow fiber microfiltration membrane with a tenon-connection structure via the thermally induced phase separation process to enhance strength and permeability. Eur Polym J 111:49–62CrossRefGoogle Scholar
  27. 27.
    Jahanshahi M, Rahimpour A, Peyravi M (2010) Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol) nanofiltration membranes. Desalination 257:129–136CrossRefGoogle Scholar
  28. 28.
    Liu M, Zhou C, Dong B, Wu Z, Wang L, Yu S, Gao C (2014) Enhancing the permselectivity of thin-film composite poly(vinyl alcohol)(PVA) nanofiltration membrane by incorporating poly(sodium-p-styrene-sulfonate) (PSSNa). J Membr Sci 463:173–182CrossRefGoogle Scholar
  29. 29.
    Pourjafar S, Rahimpour A, Jahanshahi M (2012) Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO2 nanoparticles for better performance and surface properties. J Ind Eng Chem 18:1398–1405CrossRefGoogle Scholar
  30. 30.
    Bojnourd FM, Pakizeh M (2018) Preparation and characterization of a nanoclay/PVA/PSF nanocomposite membrane for removal of pharmaceuticals from water. Appl Clay Sci 162:326–338CrossRefGoogle Scholar
  31. 31.
    Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KCW, Yamauchi Y (2017) Nano architectured design of porous materials and nanocomposites from metal-organic frameworks. J Adv Mater 29:1604898CrossRefGoogle Scholar
  32. 32.
    Yang J, Zhang YB, Liu Q, Trickett CA, Gutiérrez-Puebla E, Monge MA, Yaghi OM (2017) Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. J Am Chem Soc 139:6448–6455CrossRefGoogle Scholar
  33. 33.
    Nune SK, Thallapally PK, Dohnalkova A, Wang C, Liu J, Exarhos GJ (2010) Synthesis and properties of nano zeolitic imidazolate frameworks. Chem Commun 46:4878–4880CrossRefGoogle Scholar
  34. 34.
    Van Goethem C, Verbeke R, Pfanmöller M, Koschine T, Dickmann M, Timpel-Lindner T, VankelecomI F (2018) The role of MOFs in thin-film nanocomposite (TFN) membranes. J Membr Sci 563:938–948CrossRefGoogle Scholar
  35. 35.
    Wang L, Fang M, Liu J, He J, Li J, Lei J (2015) Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications. ACS Appl Mater Interfaces 7:24082–24093CrossRefGoogle Scholar
  36. 36.
    Duan J, Pan Y, Pacheco F, Litwiller E, Lai Z, Pinnau I (2015) High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J Membr Sci 476:303–310CrossRefGoogle Scholar
  37. 37.
    Xiao F, WangB HuX, Nair S, Chen Y (2018) thin film nanocomposite membrane containing zeolitic imidazolate framework-8 via interfacial polymerization for highly permeable nanofiltration. J Taiwan Inst Chem E 83:159–167CrossRefGoogle Scholar
  38. 38.
    Sorribas S, Gorgojo P, Téllez C, Coronas J, Livingston AG (2013) High flux thin film nanocomposite membranes based on metal–organic frameworks for organic solvent nanofiltration. J Am Chem Soc 135:15201–15208CrossRefGoogle Scholar
  39. 39.
    Hajian M, Reisi MR, Koohmareh GA, Jam ARZ (2012) Preparation and characterization of polyvinylbutyral/graphene nanocomposite. J Polym Res 19:9966CrossRefGoogle Scholar
  40. 40.
    Tsai CW, Langner EH (2016) The effect of synthesis temperature on the particle size of nano-ZIF-8. Microporous Mesoporous Mater 221:8–13CrossRefGoogle Scholar
  41. 41.
    Rabiee H, Farahani MHDA, Vatanpour V (2014) Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. J Membr Sci 472:185–193CrossRefGoogle Scholar
  42. 42.
    Low ZX, Razmjou A, Wang K, Gray S, Duke M, Wang H (2014) Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. J Membr Sci 460:9–17CrossRefGoogle Scholar
  43. 43.
    Lin KYA, Chang HA (2015) Efficient adsorptive removal of humic acid from water using zeolitic imidazole framework-8 (ZIF-8). Water Air Soil Pollut 226:10CrossRefGoogle Scholar
  44. 44.
    Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal–organic frameworks. Chem Rev 114:10575–10612CrossRefGoogle Scholar
  45. 45.
    Lee YR, Jang MS, Cho HY, Kwon HJ, Kim S, Ahn WS (2015) ZIF-8: a comparison of synthesis methods. Chem Eng J 271:276–280CrossRefGoogle Scholar
  46. 46.
    Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191CrossRefGoogle Scholar
  47. 47.
    Jian M, Liu B, Zhang G, Liu R, Zhang X (2015) Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf A 465:67–76CrossRefGoogle Scholar
  48. 48.
    Figueiredo KCS, Alves TL, Borges CP (2009) Poly(vinyl alcohol) films cross-linked by glutaraldehyde under mild conditions. J Appl Polym Sci 111:3074–3080CrossRefGoogle Scholar
  49. 49.
    Aktürk A, Taygun ME, Güler FK, Goller G, Küçükbayrak S (2019) Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids Surf A 562:255–262CrossRefGoogle Scholar
  50. 50.
    Zheng Y, Yao G, Cheng Q, Yu S, Liu M, Gao C (2013) Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination 328:42–50CrossRefGoogle Scholar
  51. 51.
    Sotto A, Orcajo G, Arsuaga JM, Calleja G, Landaburu-Aguirre J (2015) Preparation and characterization of MOF-PES ultrafiltration membranes. J Appl Polym Sci 132:41633CrossRefGoogle Scholar
  52. 52.
    Emadzadeh D, Lau WJ, Matsuura T, Rahbari-Sisakht M, Ismail AF (2014) A novel thin film composite forward osmosis membrane prepared from PSF–TiO2 nanocomposite substrate for water desalination. Chem Eng J 237:70–80CrossRefGoogle Scholar
  53. 53.
    Emadzadeh D, Lau WJ, Matsuura T, Ismail AF, Rahbari-Sisakht M (2014) Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. J Membr Sci 449:74–85CrossRefGoogle Scholar
  54. 54.
    Lai GS, Lau WJ, Goh PS, Ismail AF, Yusof N, Tan YH (2016) Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 387:14–24CrossRefGoogle Scholar
  55. 55.
    Xie Q, Zhang S, Hong Z, Ma H, Zeng B, Gong X, Wang Q (2019) A novel double-modified strategy to enhance the performance of thin-film nanocomposite nanofiltration membranes: incorporating functionalized graphenes into supporting and selective layers. Chem Eng J 368:186–201CrossRefGoogle Scholar
  56. 56.
    Zhang H, Mao H, Wang J, Ding R, Du Z, Liu J, Cao S (2014) Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration. J Membr Sci 470:70–79CrossRefGoogle Scholar
  57. 57.
    Childress AE, Elimelech M (1996) Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J Membr Sci 119:253–268CrossRefGoogle Scholar
  58. 58.
    Verwey EJW (1947) Theory of the stability of lyophobic colloids. J Phys Chem 51:631–636CrossRefGoogle Scholar
  59. 59.
    Tam CM, Tremblay AY (1991) Membrane pore characterization-comparison between single and multicomponent solute probe techniques. J Membr Sci 57:271–287CrossRefGoogle Scholar
  60. 60.
    Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22:46–56CrossRefGoogle Scholar
  61. 61.
    Cassano A, Conidi C, Ruby-Figueroa R, Castro-Muñoz R (2018) Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int J Mol Sci 19:351CrossRefGoogle Scholar
  62. 62.
    Li Y, Su Y, Zhao X, Zhang R, Zhao J, Fan X, Jiang Z (2014) Surface fluorination of polyamide nanofiltration membrane for enhanced antifouling property. J Membr Sci 455:15–23CrossRefGoogle Scholar
  63. 63.
    Rajaeian B, Heitz A, Tade MO, Liu S (2015) Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J Membr Sci 485:48–59CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2019

Authors and Affiliations

  1. 1.Faculty of Chemistry, Department of Polymer ChemistryUniversity of IsfahanIsfahanIran

Personalised recommendations