Advertisement

Adsorption and release of caffeine from smart PVDF polyampholyte membrane

  • G. M. Estrada-VillegasEmail author
  • G. González-Pérez
  • E. Bucio
Original Research
  • 5 Downloads

Abstract

pH sensitivity, load, and release of caffeine from polyampholyte, acrylic acid (AAc), and 2-N,N-dimethylamino ethyl methacrylate (DMAEMA) grafted onto DURAPORE® PVDF membrane were studied. Polyampholyte was previously “grafted-from” on membranes by gamma irradiation technique in two steps: (1) PVDF-g-DMAEMA using direct method and (2) grafted AAc by pre-irradiation method, to obtain (PVDF-g-DMAEMA)-g-AAc. The results showed that binary copolymer grafted onto PVDF membrane PVDF-g-DMAEMA-g-AAc acts as responsive porous polymer membrane to control drug delivery. For this project, caffeine was used as a model drug. Drug adsorption was enhanced by the dissociation of grafting chains (PAAc and PDMAEMA) and by drug charge. The adsorption results showed that caffeine was loaded and released by the modified membrane and due to the nature of binary copolymer and the drug adsorption. Additional analysis as mechanical testing, scanning electron microscopy, and contact angle measurements was done to characterize the polyampholyte. This work designates the role of pH-sensitive acid, alkaline, and polyampholyte monomers in the improvement of no functionalized fluoropolymer membranes imparting its pH sensitivity and specific interaction with charged molecules as some drugs, proteins, or metals among others. The present results show that the load and release of caffeine adsorbed onto the pH-sensitive membrane and its strong dependence on pH and grafting degree. The membrane may be suitable for separating drugs from protein aqueous substances for subsequent monitoring and evaluation process.

Keywords

Smart grafting copolymers Polyampholyte pH-responsive Drug adsorption PVDF membranes 

Notes

Acknowledgements

The authors wish to express their thanks to B. Leal and F. García from ICN-UNAM for their technical assistance. This work was supported by DGAPA-UNAM under Grant IN201617 and partially financed by CONACyT-296395 project.

References

  1. 1.
    Tufani A, Ince GO (2017) Smart membranes with pH-responsive control of macromolecule permeability. J MembrSci 537:255–262Google Scholar
  2. 2.
    Tang Y, Xue Z, Zhou X, Xie X, Tang C (2014) Novel sulfonatedpolysulfone ion exchange membranes for ionic polymer-metal composite actuators. Sens Actuator B Chem 202:1164–1174CrossRefGoogle Scholar
  3. 3.
    Yang J, Kopeček J (2016) Design of smart HPMA copolymer-based nanomedicines. J Control Release 240:9–23CrossRefGoogle Scholar
  4. 4.
    Chen Y, Yan X, Zhao J, Feng H, Li P, Tong Z, Yang Z, Li S, Yang J, Jin S (2018) Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohyd Polym 191:8–16CrossRefGoogle Scholar
  5. 5.
    Fan XX, Xie R, Zhao Q, Li XY, Ju XJ, Wang W, Liu Z, Chu LY (2018) Dual pH-responsive smart gating membranes. J Membr Sci 555:20–29CrossRefGoogle Scholar
  6. 6.
    Wang L, Liu M, Gao C, Ma L, Cui D (2010) A pH-, thermo-, and glucose-, triple-responsive hydrogels: synthesis and controlled drug delivery. React Funct Polym 70:159–167CrossRefGoogle Scholar
  7. 7.
    Bottino A, Capannelli G, Comite A (2005) Novel porous poly(vinylidene fluoride) membranes for membrane distillation. Desalination 183:375–382CrossRefGoogle Scholar
  8. 8.
    Chae SR, Yamamura H, Ikeda K, Watanabe Y (2008) Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination. Water Res 42:2029–2042CrossRefGoogle Scholar
  9. 9.
    Wu B, Li K, Teo WK (2007) Preparation and characterization of poly(vinylidene fluoride) hollow fiber membranes for vacuum membrane distillation. J Appl Polym Sci 106:1482–1495CrossRefGoogle Scholar
  10. 10.
    Salehi SM, Profio GD, Fontananova E, Nicoletta FP, Curcio E, Filpo GD (2016) Membrane distillation by novel hydrogel composite membranes. J Membr Sci 504:220–229CrossRefGoogle Scholar
  11. 11.
    Wang X, Chen C, Liu H, Ma J (2008) Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water Res 42:4656–4664CrossRefGoogle Scholar
  12. 12.
    Park HH, Deshwal BR, Jo HD, Choi WK, Kim IW, Lee HK (2009) Absorption of nitrogen dioxide by PVDF hollow fiber membranes in a G-L contactor. Desalination 243:52–64CrossRefGoogle Scholar
  13. 13.
    Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martin P, Gonçalves R, Cardoso VF, Lanceros-Méndez S (2018) Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Am Inc Part Springer Nat 13:681–704Google Scholar
  14. 14.
    Momtaz M, Dewez JL, Marchand-Brynaert J (2005) Chemical reactivity assay and surface characterization of a poly(vinylidene fluoride) microfiltration membrane (“Durapore DVPP”). J Membr Sci 205:29–37CrossRefGoogle Scholar
  15. 15.
    Ji J, Liu F, Hashim NA, Abed MRM, Li K (2015) Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. React FunctPolym 86:134–153CrossRefGoogle Scholar
  16. 16.
    Chen G, Lin Q, Chen S, Chen X (2016) In-plane biaxial ratcheting behavior of PVDF UF membrane. Polym Test 50:41–48CrossRefGoogle Scholar
  17. 17.
    Faisal A, AlMarzooqi FA, Bilad MR, Arafat HA (2016) Development of PVDF membranes for membrane distillation via vapour induced crystallisation. Eur Polym J 77:164–173CrossRefGoogle Scholar
  18. 18.
    Wang J, Zheng L, Wu Z, Zhang Y, Zhang X (2016) Fabrication of hydrophobic flat sheet and hollow fiber membranes from PVDF and PVDF-CTFE for membrane distillation. J Membr Sci 497:183–193CrossRefGoogle Scholar
  19. 19.
    Si T, Wang Y, Wei W, Lv P, Ma G, Su Z (2011) Effect of acrylic acid weight percentage on the pore size in poly(N-isopropyl acrylamide-co-acrylic acid) microspheres. React Funct Polym 71:728–735CrossRefGoogle Scholar
  20. 20.
    Ribeiro Clarisse, Sencadas Vítor, Correia Daniela M, Lanceros-Méndez Senentxu (2015) Piezoelectricpolymers as biomaterials for tissue engineering applications. Colloids Surf B 136:46–55CrossRefGoogle Scholar
  21. 21.
    Lasheras A, Gutiérrez J, Reis S, Sousa D, Silva M, Martins P, Lanceros-Mendez S, DA BarandiaránJM Shishkin, Potapov AP (2015) Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite. Smart Mater Struct 24:65024–65030CrossRefGoogle Scholar
  22. 22.
    Cuscito O, Clochard MC, Esnouf S, Betz N, Lairez D (2007) Nanoporous betaPVDF membranes with selectively functionalized pores. Nucl Instrum Methods Phys Res, Sect B 265:309–313CrossRefGoogle Scholar
  23. 23.
    Mohan YM, Geckeler KE (2007) Polyampholitichydrogels: poly(N-isopropylacrylamide)-based stimuli-responsive networks with poly (ethylene imine). React Funct Polym 67:144–155CrossRefGoogle Scholar
  24. 24.
    Wandera D, Wickramasinghe SR, Husson SM (2010) Stimuli-responsive membranes. J Membr Sci 357:6–35CrossRefGoogle Scholar
  25. 25.
    Xiao S, Ren B, Huang L, Shen M, Zhang Y, Zhong M, Yang J, Zheng J (2018) Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr Opin Chem Eng 19:86–93CrossRefGoogle Scholar
  26. 26.
    Hansen NML, Jankova K, Hvilsted S (2007) Fluoropolymer materials and architectures prepared by controlled radical polymerizations. Eur Polym J 43:255–293CrossRefGoogle Scholar
  27. 27.
    Liu Q, Zhu Z, Yang X, Chen X, Song Y (2007) Temperature-sensitive porous membrane production through radiation co-grafting of NIPAAm on/in PVDF porous membrane. Radiat Phys Chem 76:707–713CrossRefGoogle Scholar
  28. 28.
    Tabary N, Lepretre S, Boschin F, Blanchemain N, Neut C, Delcourt-Debruyne E, Martel B, Morcellet M, Hildebrand HF (2007) Functionalization of PVDF membranes with carbohydrate derivates for the controlled delivery of chlorhexidin. Biomol Eng 24:472–476CrossRefGoogle Scholar
  29. 29.
    Clochard MC, Bègue J, Lafon A, Caldemaison D, Bittencourt C, Pireaux JJ, Betz N (2007) Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF. Polymer 45:8683–8694CrossRefGoogle Scholar
  30. 30.
    Karppi J, Åkerman S, Åkerman K, Sundell A, Nyyssönen K, Penttilä I (2007) Adsorption of drugs onto a pH responsive poly(N, N-dimethyl aminoethyl methacrylate) grafted anion-exchange membrane in vitro. Int J Pharm 338:7–14CrossRefGoogle Scholar
  31. 31.
    Karppi J, Åkerman S, Åkerman K, Sundell A, Nyyssönen K, Penttilä I (2007) Isolation of drugs from biological fluids by using pH sensitive poly(acrylic acid) grafted poly(vinylidene fluoride) polymer membrane in vitro. Eur J Pharm Biopharm 67:562–568CrossRefGoogle Scholar
  32. 32.
    Estrada-Villegas GM, Bucio E (2013) Comparative study of grafting a polyampholyte in a fluoropolymer membrane by gamma radiation in one or two-steps. Radiat Phys Chem 92:61–65CrossRefGoogle Scholar
  33. 33.
    Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clinical Biochem Rev 29:49–52Google Scholar
  34. 34.
    Ortega A, Alarcón D, Muñoz-Muñoz F, Garzón-Fontech A, Burillo G (2015) Radiation grafting of pH-sensitive acrylic acid and 4-vinyl pyridine onto nylon-6 using one- and two-step methods. Radiat Phys Chem 109:6–12CrossRefGoogle Scholar
  35. 35.
    Hu Y, Wang J, Zhang H, Jiang G, Kan C (2014) Synthesis and characterization of monodispersed P(St-co-DMAEMA) nanoparticles as pH-sensitive drug delivery system. Mater Sci Eng, C 45:1–7CrossRefGoogle Scholar
  36. 36.
    Dean JA (1985) Lange’s handbook of chemistry, 13th edn. McGraw-Hill Book Co, New YorkGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2019

Authors and Affiliations

  1. 1.Cátedras CONACyT–Centro de Investigación en Química AplicadaParque de Innovación e Investigación TecnológicaApodacaMexico
  2. 2.Departamento de Ingeniería, Tecnológico Nacional de MéxicoInstituto Tecnológico de Nuevo LeónGuadalupeMexico
  3. 3.Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations