Advertisement

Iranian Polymer Journal

, Volume 28, Issue 2, pp 113–122 | Cite as

Numerical and experimental study of impact on hyperelastic rubber panels

  • Amin Khodadadi
  • Gholamhossein LiaghatEmail author
  • Hamed Ahmadi
  • Ahmad Reza Bahramian
  • Yavar Anani
  • Omid Razmkhah
  • Samaneh Asemeni
Original Research
  • 41 Downloads

Abstract

This study presents the response of rubber panels subjected to high-velocity impact loading. The mechanical properties and impact performance of rubber panels are altered by the variation in compound ingredients. To investigate the effect of compound ingredients, two types of rubber panels with high (SHA70) and low hardnesses (SHA45) were prepared, and mechanical properties and impact resistance of the panels were measured by high-velocity impact tests in a velocity range of 70–160 m/s. Ballistic limits of about 80 and 94 m/s were obtained for the low- and high-hardness rubbers, respectively, which show that the energy absorption of rubber panels increases as filler loading content increases. In this respect, the finite-element simulation has been performed to investigate the ballistic performance of rubber panels numerically. Rubber panel has been modeled using the LS-DYNA software and employing the experimental results of tensile test to characterize the behavior of panel. The findings show a good agreement between the numerical and experimental data. To study the effect of projectile’s shape, impact resistance of the rubber panels against hemispherical projectiles with different length-to-diameter (L/D) ratios (projectiles with diameters of 8, 10, and 12 mm) was measured and the model was also used. The results demonstrate that energy absorption of the panel increases as the diameter of projectile increases. The energy absorbed by the rubber panels appears in the form of damages that lead to increase their damage zone.

Keyword

High-velocity impact Rubber panel Energy absorption Numerical simulation LS-DYNA Shape of projectile 

Notes

Acknowledgements

The authors are grateful to the Tarbiat Modares University (TMU) for their financial support.

References

  1. 1.
    Vergnaud JM, Rosca ID (2016) Rubber curing and properties. CRC, FloridaGoogle Scholar
  2. 2.
    Bhattacharya M, Bhowmick AK (2010) Synergy in carbon black-filled natural rubber nanocomposites. Part I: mechanical, dynamic mechanical properties, and morphology. Mater Sci 45:6126–6138CrossRefGoogle Scholar
  3. 3.
    Fröhlich J, Niedermeier W, Luginsland HD (2005) The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part A 36:449–460CrossRefGoogle Scholar
  4. 4.
    Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687CrossRefGoogle Scholar
  5. 5.
    Li X, Li Z, Xia Y (2015) Test and calculation of the carbon black reinforcement effect on the hyper-elastic properties of tire rubbers. Rubber Chem Technol 88:98–116CrossRefGoogle Scholar
  6. 6.
    Manroshan S, Baharin A (2005) Effect of nanosized calcium carbonate on the mechanical properties of latex films. J Appl Polym Sci 96:1550–1556CrossRefGoogle Scholar
  7. 7.
    Visakh P, Thomas S, Oksman K, Mathew AP (2012) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Compos Part A 43:735–741CrossRefGoogle Scholar
  8. 8.
    Nabil H, Ismail H, Azura A (2014) Properties of natural rubber/recycled ethylene–propylene–diene rubber blends prepared using various vulcanizing systems. Iran Polym J 23:37–45CrossRefGoogle Scholar
  9. 9.
    Brydson JA (1978) Rubber chemistry. Applied science publishers, London, p 462Google Scholar
  10. 10.
    Li Z, Zhang J, Chen S (2008) Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. Exp Polym Lett 2:695–704CrossRefGoogle Scholar
  11. 11.
    Luyt AS, McGill WJ, Shillington D (1990) DSC study of the interaction of 2-mercaptobenzothiazole, sulphur, ZnO and stearic acid in the absence of rubber. Polym Int 23:135–139Google Scholar
  12. 12.
    Khodadadi A, Liaghat GH, Sabet AR, Hadavinia H, Aboutorabi A, Razmkhah O (2018) Experimental and numerical analysis of penetration into Kevlar fabric impregnated with shear thickening fluid. J Thermoplast Compos Mater 31:392–407CrossRefGoogle Scholar
  13. 13.
    Moallemzadeh AR, Sabet AR, Abedini H (2017) Mechanical and morphological study of polymer composite plates having different fiber surface treatments with particular response to high velocity projectile impact. Iran Polym J 26:229–238CrossRefGoogle Scholar
  14. 14.
    Mamivand M, Liaghat G (2010) A model for ballistic impact on multi-layer fabric targets. Int J Impact Eng 37:806–812CrossRefGoogle Scholar
  15. 15.
    Studebaker M, Beatty J (1974) Effects of compounding on dynamic mechanical properties of rubber. Rubber Chem Technol 47:803–824CrossRefGoogle Scholar
  16. 16.
    Söver A, Frormann L, Kipscholl R (2009) High impact-testing machine for elastomers investigation under impact loads. Polym Test 28:871–874CrossRefGoogle Scholar
  17. 17.
    Fatt MSH, Ouyang X (2007) Integral-based constitutive equation for rubber at high strain rates. Solids Struct 44:6491–6506CrossRefGoogle Scholar
  18. 18.
    Sasso M, Palmieri G, Chiappini G, Amodio D (2008) Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polym Test 27:995–1004CrossRefGoogle Scholar
  19. 19.
    Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592CrossRefGoogle Scholar
  20. 20.
    Selvadurai A (2006) Deflections of a rubber membrane. Mech Phys Solids 54:1093–1119CrossRefGoogle Scholar
  21. 21.
    Neves R, Micheli G, Alves M (2010) An experimental and numerical investigation on tyre impact. Impact Eng 37:685–693CrossRefGoogle Scholar
  22. 22.
    Pamplona D, Goncalves P, Lopes S (2006) Finite deformations of cylindrical membrane under internal pressure. Mech Sci 48:683–696CrossRefGoogle Scholar
  23. 23.
    Roland CM (2012) Glass transition in rubbery materials. Rubber Chem Technol 85:313–326CrossRefGoogle Scholar

Copyright information

© Iran Polymer and Petrochemical Institute 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTarbiat Modares UniversityTehranIran
  2. 2.School of Mechanical and Automotive EngineeringKingston UniversityLondonUK
  3. 3.Department of Polymer EngineeringTarbiat Modares UniversityTehranIran
  4. 4.Coventry UniversityCoventryUK

Personalised recommendations