EURO Journal on Transportation and Logistics

, Volume 8, Issue 4, pp 363–396 | Cite as

The stochastic discrete berth allocation problem

  • Xavier ScheplerEmail author
  • Nabil Absi
  • Dominique Feillet
  • Eric Sanlaville
Research Paper


This paper deals with the discrete berth allocation problem with stochastic arrival times of vessels. The problem is to assign incoming vessels to a finite set of berthing points (berths) and to schedule them. The major objective is to minimize the expected total turnaround time of the vessels. We develop several new proactive, reactive and proactive/reactive approaches to this problem. Numerical experiments enable to compare these approaches. They show the impact of using full stochastic information instead of using mean values in a deterministic setting. The proactive/reactive approach, based on iterated tabu search and stochastic dynamic programming, provides good results when uncertainties on arrival times remain limited, while requiring only a few minutes of computing time on average. For larger levels of uncertainty, the proposed pure reactive approach clearly outperforms the others.


Container terminal logistics Discrete berth scheduling Stochastic optimization Iterated tabu search Dynamic programming 



This work was financed by French Government, region of Normandy, and European Union within 4TRAX and CLASSE projects.


  1. Belouadah H, Posner ME, Potts CN (1992) Scheduling with release dates on a single machine to minimize total weighted completion time. Discret Appl Math 36(3):213–231CrossRefGoogle Scholar
  2. Bertsekas D (2017) Dynamic programming and optimal control, vol 1. 4th edn. Athena Scientific, NashuaGoogle Scholar
  3. Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202(3):615–627. CrossRefGoogle Scholar
  4. Bierwirth C, Meisel F (2015) A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 244(3):675–689. CrossRefGoogle Scholar
  5. Billaut JC, Moukrim A, Sanlaville E (2008) Flexibility and robustness in scheduling. ISTE/Wiley, HobokenCrossRefGoogle Scholar
  6. Buhrkal K, Zuglian S, Ropke S, Larsen J, Lusby R (2011) Models for the discrete berth allocation problem: a computational comparison. Transp Res Part E Logist Transp Rev 47(4):461–473. CrossRefGoogle Scholar
  7. Carlo HJ, Vis IFA, Roodbergen KJ (2013) Seaside operations in container terminals: literature overview, trends, and research directions. Flex Serv Manuf J 27(2):224–262. CrossRefGoogle Scholar
  8. Christensen CG, Holst CT (2008) Berth allocation in container terminals. Master’s thesis, Technical University of DenmarkGoogle Scholar
  9. Cordeau JF, Laporte G, Legato P, Moccia L (2005) Models and tabu search heuristics for the berth-allocation problem. Transp Sci 39(4):526–538. CrossRefGoogle Scholar
  10. Dai J, Lin W, Moorthy R, Teo CP (2008) Berth allocation planning optimization in container terminals. In: Tang CS, Teo CP, Wei KK (eds) Supply chain analysis. International series in operations research & mana, vol 119. Springer, Boston, pp 69–104. CrossRefGoogle Scholar
  11. Davenport AJ, Beck JC (2000) A survey of techniques for scheduling with uncertainty. (unpublished manuscript)
  12. Du Y, Xu Y, Chen Q (2010) A feedback procedure for robust berth allocation with stochastic vessel delays. In: 8th World congress on intelligent control and automation (WCICA), 2010, pp 2210–2215Google Scholar
  13. Giallombardo G, Moccia L, Salani M, Vacca I (2010) Modeling and solving the tactical berth allocation problem. Transp Res Part B Methodol 44(2):232–245. CrossRefGoogle Scholar
  14. Han X, Lu Z, Xi L et al (2010) A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. Eur J Oper Res 207(3):1327–1340CrossRefGoogle Scholar
  15. Imai A, Nishimura E, Papadimitriou S (2001) The dynamic berth allocation problem for a container port. Transp Res Part B Methodol 35(4):401–417. CrossRefGoogle Scholar
  16. Kellerer H, Tautenhahn T, Woeginger G (1999) Approximability and nonapproximability results for minimizing total flow time on a single machine. SIAM J Comput 28(4):1155–1166CrossRefGoogle Scholar
  17. Kouvelis P, Yu G (1997) Robust discrete optimisation and its applications. Kluwer Academic Publisher, DordrechtCrossRefGoogle Scholar
  18. Lalla-Ruiz E, Voß S (2016) Popmusic as a matheuristic for the berth allocation problem. Ann Math Artif Intell 76(1):173–189. CrossRefGoogle Scholar
  19. Lalla-Ruiz E, Melin-Batista B, Moreno-Vega JM (2012) Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem. Eng Appl Artif Intell 25(6):1132–1141. CrossRefGoogle Scholar
  20. Lenstra JK, Rinnooy Kan A, Brücker P (1977) Complexity of machine scheduling problems. Ann. Discrete Math. 1:343–362CrossRefGoogle Scholar
  21. Maischberger M (2011) Coin-or metslib a metaheuristics framework in modern C++. Technical report, Optimization OnlineGoogle Scholar
  22. Moorthy R, Teo CP (2006) Berth management in container terminal: the template design problem. OR Spectr 28(4):495–518CrossRefGoogle Scholar
  23. Notteboom TE (2006) The time factor in liner shipping services. Marit Econ Logist 8(1):19–39CrossRefGoogle Scholar
  24. Pinedo M (1983) Stochastic scheduling with release dates and due dates. Oper Res 31(3):559–572CrossRefGoogle Scholar
  25. Pinedo MJ (2016) Scheduling: theory, algorithms, and systems, 5th edn. Springer, BerlinCrossRefGoogle Scholar
  26. Ruszczynski A, Shapiro A (2003) Stochastic programming. Handbooks in operations research and management science, vol 10Google Scholar
  27. Umang N, Bierlaire M, Erera AL (2016) Real-time management of berth allocation with stochastic arrival and handling times. J Sched 20(1):67–83. CrossRefGoogle Scholar
  28. Ursavas E, Zhu SX (2016) Optimal policies for the berth allocation problem under stochastic nature. Eur J Oper Res 255(2):380–387. CrossRefGoogle Scholar
  29. Vernimmen B, Dullaert W, Engelen S (2007) Schedule unreliability in liner shipping: origins and consequences for the hinterland supply chain. Marit Econ Logist 9(3):193–213CrossRefGoogle Scholar
  30. Xu Y, Chen Q, Quan X (2012) Robust berth scheduling with uncertain vessel delay and handling time. Ann Oper Res 192(1):123–140CrossRefGoogle Scholar
  31. Zhen L (2015) Tactical berth allocation under uncertainty. Eur J Oper Res 247(3):928–944. CrossRefGoogle Scholar
  32. Zhen L, Lee LH, Chew EP (2011) A decision model for berth allocation under uncertainty. Eur J Oper Res 212(1):54–68. CrossRefGoogle Scholar
  33. Zhou P, Kang H (2008) Study on berth and quay-crane allocation under stochastic environments in container terminal. Syst Eng Theory Pract 28(1):161–169CrossRefGoogle Scholar
  34. Zhou P, Kang H, Lin L (2006) A dynamic berth allocation model based on stochastic consideration. In: 2006 6th World congress on intelligent control and automation, vol 2. IEEE, New York, pp 7297–7301Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and EURO - The Association of European Operational Research Societies 2018

Authors and Affiliations

  • Xavier Schepler
    • 1
    Email author
  • Nabil Absi
    • 2
  • Dominique Feillet
    • 2
  • Eric Sanlaville
    • 3
  1. 1.LERIAUniversité d’AngersAngersFrance
  2. 2.Ecole des Mines de Saint-Etienne and LIMOS, UMR CNRS 6158, CMP Georges CharpakGardanneFrance
  3. 3.Normandie Univ, UNIHAVRE, LITISLe HavreFrance

Personalised recommendations