Advertisement

Wearable Sensor Technology to Measure Physical Activity (PA) in the Elderly

  • Ashwini K. RaoEmail author
Neurology of Aging (KS Marder, Section Editor)
  • 5 Downloads
Part of the following topical collections:
  1. Topical Collection on Neurology of Aging

Abstract

Purpose of Review

The goal of this paper is to provide a review of recent work on the use of wearable devices for measuring physical activity (PA) in the elderly.

Recent Findings

In older adults, PA is related to independence in activities of daily living and maintaining a good quality of life. With aging, there is a reduction in PA, which may explain reduced energy expenditure (EE) during rest and PA. In addition, there is also a reduction in the spatial extent of mobility (life-space). Sensors used for measuring PA include pedometers, uni-axial, bi-axial and tri-axial accelerometers, heart rate monitors combined with accelerometers, and complex systems using multiple types of sensors.

Summary

Wearable sensors are accurate at measuring step counts, PA intensity, and EE, but need to improve accuracy of measuring type of PA, spatial extent of PA, and measuring non-ambulatory PA. Clear standards for measurement, algorithms used for computing clinically relevant measures, need to be developed.

Keywords

Aging Wearables Sensors PA Energy expenditure Gait 

Notes

Acknowledgements

This work was partially supported by the US National Science Foundation under grant SCH-1838725.

Compliance with Ethical Standards

Conflict of Interest

Ashwini Rao declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Pallin DJ, Allen MB, Espinola JA, Camargo CA Jr, Bohan JS. Population aging and emergency departments: visits will not increase, lengths-of-stay and hospitalizations will. Health Aff (Millwood). 2013;32(7):1306–12.  https://doi.org/10.1377/hlthaff.2012.0951.CrossRefGoogle Scholar
  2. 2.
    Pallin DJ, Espinola JA, Camargo CA Jr. US population aging and demand for inpatient services. J Hosp Med. 2014;9(3):193–6.  https://doi.org/10.1002/jhm.2145.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson G, Horvath J. The growing burden of chronic disease in America. Public Health Rep. 2004;119(3):263–70.  https://doi.org/10.1016/j.phr.2004.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bauer UE, Briss PA, Goodman RA, Bowman BA. Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA. Lancet. 2014;384(9937):45–52.  https://doi.org/10.1016/S0140-6736(14)60648-6.CrossRefPubMedGoogle Scholar
  5. 5.
    • de Bruin ED, Hartmann A, Uebelhart D, Murer K, Zijlstra W. Wearable systems for monitoring mobility-related activities in older people: a systematic review. Clin Rehabil. 2008;22(10–11):878–95.  https://doi.org/10.1177/0269215508090675. Excellent review of wearable sensors to measure PA in older adults. CrossRefPubMedGoogle Scholar
  6. 6.
    • Zijlstra W, Aminian K. Mobility assessment in older people: new possibilities and challenges. Eur J Ageing. 2007;4(1):3–12.  https://doi.org/10.1007/s10433-007-0041-9. Excellent review of wearable sensors to measure PA in older adults. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Groessl EJ, Kaplan RM, Rejeski WJ, Katula JA, King AC, Frierson G, et al. Health-related quality of life in older adults at risk for disability. Am J Prev Med. 2007;33(3):214–8.  https://doi.org/10.1016/j.amepre.2007.04.031.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stessman J, Hammerman-Rozenberg R, Cohen A, Ein-Mor E, Jacobs JM. Physical activity, function, and longevity among the very old. Arch Intern Med. 2009;169(16):1476–83.  https://doi.org/10.1001/archinternmed.2009.248.CrossRefPubMedGoogle Scholar
  9. 9.
    Yeom HA, Fleury J, Keller C. Risk factors for mobility limitation in community-dwelling older adults: a social ecological perspective. Geriatr Nurs. 2008;29(2):133–40.  https://doi.org/10.1016/j.gerinurse.2007.07.002.CrossRefPubMedGoogle Scholar
  10. 10.
    Mahant PR, Stacy MA. Movement disorders and normal aging. Neurol Clin. 2001;19(3):553–63 vi.CrossRefGoogle Scholar
  11. 11.
    Yuki A, Lee S, Kim H, Kozakai R, Ando F, Shimokata H. Relationship between physical activity and brain atrophy progression. Med Sci Sports Exerc. 2012;44(12):2362–8.  https://doi.org/10.1249/MSS.0b013e3182667d1d.CrossRefPubMedGoogle Scholar
  12. 12.
    Hirvensalo M, Rantanen T, Heikkinen E. Mobility difficulties and physical activity as predictors of mortality and loss of independence in the community-living older population. J Am Geriatr Soc. 2000;48(5):493–8.CrossRefGoogle Scholar
  13. 13.
    Cabanas-Sanchez V, Guallar-Castillon P, Higueras-Fresnillo S, Garcia-Esquinas E, Rodriguez-Artalejo F, Martinez-Gomez DPA. Sitting time, and mortality from inflammatory diseases in older adults. Front Physiol. 2018;9:898.  https://doi.org/10.3389/fphys.2018.00898. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gregg EW, Pereira MA, Caspersen CJ. PA, falls, and fractures among older adults: a review of the epidemiologic evidence. J Am Geriatr Soc. 2000;48(8):883–93.CrossRefGoogle Scholar
  15. 15.
    von Bonsdorff M, Rantanen T, Laukkanen P, Suutama T, Heikkinen E. Mobility limitations and cognitive deficits as predictors of institutionalization among community-dwelling older people. Gerontology. 2006;52(6):359–65.  https://doi.org/10.1159/000094985.CrossRefGoogle Scholar
  16. 16.
    Organization WH. Active ageing: a policy framework. Geneva, Switzerland: World Health Organization2002 Contract No.: WHO/NMH/NPH/02.8; 2002.Google Scholar
  17. 17.
    Webber SC, Porter MM, Menec VH. Mobility in older adults: a comprehensive framework. Gerontologist. 2010;50(4):443–50.  https://doi.org/10.1093/geront/gnq013.CrossRefPubMedGoogle Scholar
  18. 18.
    Cyarto EV, Myers A, Tudor-Locke C. Pedometer accuracy in nursing home and community-dwelling older adults. Med Sci Sports Exerc. 2004;36(2):205–9.  https://doi.org/10.1249/01.MSS.0000113476.62469.98.CrossRefPubMedGoogle Scholar
  19. 19.
    Bennett GG, Wolin KY, Puleo E, Emmons KM. Pedometer-determined physical activity among multiethnic low-income housing residents. Med Sci Sports Exerc. 2006;38(4):768–73.  https://doi.org/10.1249/01.mss.0000210200.87328.3f.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Farmer BC, Croteau KA, Richeson NE, Jones DB. Using pedometers as a strategy to increase the daily steps of older adults with chronic illness: from research to practice. Home Healthc Nurse. 2006;24(7):449–56.CrossRefGoogle Scholar
  21. 21.
    Cohen-Mansfield J, Werner P, Culpepper WJ, Wolfson M, Bickel E. Assessment of ambulatory behavior in nursing home residents who pace or wander: a comparison of four commercially available devices. Dement Geriatr Cogn Disord. 1997;8(6):359–65.  https://doi.org/10.1159/000106656.CrossRefPubMedGoogle Scholar
  22. 22.
    Algase DL, Beattie ER, Leitsch SA, Beel-Bates CA. Biomechanical activity devices to index wandering behavior in dementia. Am J Alzheimers Dis Other Demen. 2003;18(2):85–92.  https://doi.org/10.1177/153331750301800202.CrossRefPubMedGoogle Scholar
  23. 23.
    Martin JB, Krc KM, Mitchell EA, Eng JJ, Noble JW. Pedometer accuracy in slow walking older adults. Int J Ther Rehabil. 2012;19(7):387–93.CrossRefGoogle Scholar
  24. 24.
    Ancoli-Israel S, Clopton P, Klauber MR, Fell R, Mason W. Use of wrist activity for monitoring sleep/wake in demented nursing-home patients. Sleep. 1997;20(1):24–7.CrossRefGoogle Scholar
  25. 25.
    Plasqui G, Westerterp KR. PA assessment with accelerometers: an evaluation against doubly labeled water. Obesity (Silver Spring). 2007;15(10):2371–9.  https://doi.org/10.1038/oby.2007.281. CrossRefGoogle Scholar
  26. 26.
    Richardson MT, Leon AS, Jacobs DR Jr, Ainsworth BE, Serfass R. Ability of the Caltrac accelerometer to assess daily PA levels. J Cardpulm Rehabil. 1995;15(2):107–13.CrossRefGoogle Scholar
  27. 27.
    Sewell L, Singh SJ, Williams JEA, Collier R, Morgan MDL. Can individualized rehabilitation improve functional independence in elderly patients with COPD? Chest. 2005;128(3):1194–200.  https://doi.org/10.1378/chest.128.3.1194.CrossRefPubMedGoogle Scholar
  28. 28.
    Singh S, Morgan MD. Activity monitors can detect brisk walking in patients with chronic obstructive pulmonary disease. J Cardpulm Rehabil. 2001;21(3):143–8.CrossRefGoogle Scholar
  29. 29.
    • Yasunaga A, Togo F, Watanabe E, Park H, Shephard RJ, Aoyagi Y. Yearlong physical activity and health-related quality of life in older Japanese adults: the Nakanojo Study. J Aging PA. 2006;14(3):288–301. Excellent study of long-term monitoring of PA in older adults in Japan. Google Scholar
  30. 30.
    Izawa KP, Watanabe S, Oka K, Osada N, Omiya K, Brubaker PH, et al. Differences in daily in-hospital PA and geriatric nutritional risk index in older cardiac inpatients: preliminary results. Aging Clin Exp Res. 2014;26(6):599–605.  https://doi.org/10.1007/s40520-014-0233-z.CrossRefPubMedGoogle Scholar
  31. 31.
    Sallis R, Roddy-Sturm Y, Chijioke E, Litman K, Kanter MH, Huang BZ, et al. Stepping toward discharge: level of ambulation in hospitalized patients. J Hosp Med. 2015;10(6):384–9.  https://doi.org/10.1002/jhm.2343.CrossRefPubMedGoogle Scholar
  32. 32.
    Fisher SR, Graham JE, Brown CJ, Galloway RV, Ottenbacher KJ, Allman RM, et al. Factors that differentiate level of ambulation in hospitalised older adults. Age Ageing. 2012;41(1):107–11.  https://doi.org/10.1093/ageing/afr110.CrossRefPubMedGoogle Scholar
  33. 33.
    Ostir GV, Berges IM, Kuo YF, Goodwin JS, Fisher SR, Guralnik JM. Mobility activity and its value as a prognostic indicator of survival in hospitalized older adults. J Am Geriatr Soc. 2013;61(4):551–7.  https://doi.org/10.1111/jgs.12170.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kochersberger G, McConnell E, Kuchibhatla MN, Pieper C. The reliability, validity, and stability of a measure of physical activity in the elderly. Arch Phys Med Rehabil. 1996;77(8):793–5.CrossRefGoogle Scholar
  35. 35.
    Talbot LA, Gaines JM, Huynh TN, Metter EJ. A home-based pedometer-driven walking program to increase physical activity in older adults with osteoarthritis of the knee: a preliminary study. J Am Geriatr Soc. 2003;51(3):387–92.CrossRefGoogle Scholar
  36. 36.
    White HK, McConnell ES, Bales CW, Kuchibhatla M. A 6-month observational study of the relationship between weight loss and behavioral symptoms in institutionalized Alzheimer’s disease subjects. J Am Med Dir Assoc. 2004;5(2):89–97.  https://doi.org/10.1097/01.JAM.0000110646.48753.EF.CrossRefPubMedGoogle Scholar
  37. 37.
    • Arnardottir NY, Koster A, Van Domelen DR, Brychta RJ, Caserotti P, Eiriksdottir G, et al. Objective measurements of daily physical activity patterns and sedentary behaviour in older adults: Age, Gene/Environment Susceptibility-Reykjavik Study. Age Ageing. 2013;42((1468–2834 (Electronic))):222–9.  https://doi.org/10.1093/ageing/afs160. Important large-scale study on the use of wearable sensors to measure PA in older adults. CrossRefPubMedGoogle Scholar
  38. 38.
    • Shiroma EJ, Freedson PS, Trost SG, Lee IM. Patterns of accelerometer-assessed sedentary behavior in older women. JAMA. 2013;310(23):2562–3.  https://doi.org/10.1001/jama.2013.278896. Important large-scale study on the use of wearable sensors to measure PA in older adults. CrossRefPubMedGoogle Scholar
  39. 39.
    • Martin KR, Koster A, Murphy RA, Van Domelen DR, Hung MY, Brychta RJ, et al. Changes in daily activity patterns with age in U.S. men and women: National Health and Nutrition Examination Survey 2003-04 and 2005-06. J Am Geriatr Soc. 2014;62(7):1263–71.  https://doi.org/10.1111/jgs.12893. Important large-scale study on the use of wearable sensors to measure PA in older adults. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Harris TJ, Owen CG, Victor CR, Adams R, Ekelund U, Cook DG. A comparison of questionnaire, accelerometer, and pedometer: measures in older people. Med Sci Sports Exerc. 2009;41(7):1392–402.  https://doi.org/10.1249/MSS.0b013e31819b3533.CrossRefPubMedGoogle Scholar
  41. 41.
    Andersson C, Lyass A, Larson MG, Spartano NL, Vita JA, Benjamin EJ, et al. Physical activity measured by accelerometry and its associations with cardiac structure and vascular function in young and middle-aged adults. J Am Heart Assoc. 2015;4(3):e001528.  https://doi.org/10.1161/JAHA.114.001528. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Benjamin I, Brown N, Burke G, Correa A, Houser SR, Jones DW, et al. American Heart Association Cardiovascular Genome-Phenome Study: foundational basis and program. Circulation. 2015;131(1):100–12.  https://doi.org/10.1161/CIRCULATIONAHA.114.014190.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    • Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, et al. The third generation cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165(11):1328–35.  https://doi.org/10.1093/aje/kwm021. Important large-scale study on the use of wearable sensors to measure PA in older adults. CrossRefPubMedGoogle Scholar
  44. 44.
    • Schram MT, Sep SJ, van der Kallen CJ, Dagnelie PC, Koster A, Schaper N, et al. The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiol. 2014;29(6):439–51.  https://doi.org/10.1007/s10654-014-9889-0. Important large-scale study on the use of wearable sensors to measure PA in older adults. CrossRefPubMedGoogle Scholar
  45. 45.
    van der Berg JD, Stehouwer CD, Bosma H, van der Velde JH, Willems PJ, Savelberg HH, et al. Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: the Maastricht Study. Diabetologia. 2016;59(4):709–18.  https://doi.org/10.1007/s00125-015-3861-8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Parvaneh S, Mohler J, Toosizadeh N, Grewal GS, Najafi B. Postural transitions during activities of daily living could identify frailty status: application of wearable technology to identify frailty during unsupervised condition. Gerontology. 2017;63(5):479–87.  https://doi.org/10.1159/000460292.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    • Menai M, van Hees VT, Elbaz A, Kivimaki M, Singh-Manoux A, Sabia S. Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: results from the Whitehall II study. Sci Rep. 2017;8:45772.  https://doi.org/10.1038/srep45772. Important large-scale study on the use of wearable sensors to measure PA in older adults. CrossRefPubMedGoogle Scholar
  48. 48.
    Lim SER, Dodds R, Bacon D, Sayer AA, Roberts HC. Physical activity among hospitalised older people: insights from upper and lower limb accelerometry. Aging Clin Exp Res. 2018;30:1363–9.  https://doi.org/10.1007/s40520-018-0930-0.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wullems JA, Verschueren SMP, Degens H, Morse CI, Onambele GL. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults. PLoS One. 2017;12(11):e0188215.  https://doi.org/10.1371/journal.pone.0188215.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Moe-Nilssen R, Helbostad JL. Interstride trunk acceleration variability but not step width variability can differentiate between fit and frail older adults. Gait & posture. 2005;21(2):164–70.  https://doi.org/10.1016/j.gaitpost.2004.01.013.CrossRefGoogle Scholar
  51. 51.
    • Nastasi AJ, Ahuja A, Zipunnikov V, Simonsick EM, Ferrucci L, Schrack JA. Objectively measured physical activity and falls in well-functioning older adults: findings from the Baltimore Longitudinal Study of Aging. Am J Phys Med Rehabil. 2018;97(4):255–60.  https://doi.org/10.1097/PHM.0000000000000830. Important large-scale study on the use of wearable sensors to measure PA in older adults. CrossRefPubMedGoogle Scholar
  52. 52.
    Schrack JA, Zipunnikov V, Goldsmith J, Bai J, Simonsick EM, Crainiceanu C, et al. Assessing the “physical cliff”: detailed quantification of age-related differences in daily patterns of physical activity. J Gerontol. 2014;69(8):973–9.  https://doi.org/10.1093/gerona/glt199.CrossRefGoogle Scholar
  53. 53.
    Wanigatunga AA, Simonsick EM, Zipunnikov V, Spira AP, Studenski S, Ferrucci L, et al. Perceived fatigability and objective physical activity in mid- to late-life. J Gerontol. 2018;73(5):630–5.  https://doi.org/10.1093/gerona/glx181.CrossRefGoogle Scholar
  54. 54.
    Martinez-Ramirez A, Martinikorena I, Gomez M, Lecumberri P, Millor N, Rodriguez-Manas L, et al. Frailty assessment based on trunk kinematic parameters during walking. J Neuroeng Rehabil. 2015;12:48.  https://doi.org/10.1186/s12984-015-0040-6.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Martinez-Ramirez A, Martinikorena I, Lecumberri P, Gomez M, Millor N, Casas-Herrero A, et al. Dual task gait performance in frail individuals with and without mild cognitive impairment. Dement Geriatr Cogn Disord. 2016;42(1–2):7–16.  https://doi.org/10.1159/000447451.CrossRefPubMedGoogle Scholar
  56. 56.
    Millor N, Lecumberri P, Gomez M, Martinez-Ramirez A, Izquierdo M. An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit. J Neuroeng Rehabil. 2013;10:86.  https://doi.org/10.1186/1743-0003-10-86.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    • Millor N, Lecumberri P, Gomez M, Martinez-Ramirez A, Izquierdo M. Kinematic parameters to evaluate functional performance of sit-to-stand and stand-to-sit transitions using motion sensor devices: a systematic review. IEEE Trans Neural Syst Rehabil Eng. 2014;22(5):926–36.  https://doi.org/10.1109/TNSRE.2014.2331895. Excellent review of the use of wearable sensors to instrument standardized clinical assessment. CrossRefPubMedGoogle Scholar
  58. 58.
    Millor N, Lecumberri P, Gomez M, Martinez-Ramirez A, Rodriguez-Manas L, Garcia-Garcia FJ, et al. Automatic evaluation of the 30-s chair stand test using inertial/magnetic-based technology in an older prefrail population. IEEE J Biomed Health Inform. 2013;17(4):820–7.  https://doi.org/10.1109/JBHI.2013.2238243.CrossRefPubMedGoogle Scholar
  59. 59.
    Ganea R, Paraschiv-Ionescu A, Bula C, Rochat S, Aminian K. Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Med Eng Phys. 2011;33(9):1086–93.  https://doi.org/10.1016/j.medengphy.2011.04.015.CrossRefPubMedGoogle Scholar
  60. 60.
    Galan-Mercant A, Cuesta-Vargas AI. Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. BMC Res Notes. 2014;7:100.  https://doi.org/10.1186/1756-0500-7-100.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dijkstra B, Zijlstra W, Scherder E, Kamsma Y. Detection of walking periods and number of steps in older adults and patients with Parkinson’s disease: accuracy of a pedometer and an accelerometry-based method. Age Ageing. 2008;37(4):436–41.  https://doi.org/10.1093/ageing/afn097.CrossRefPubMedGoogle Scholar
  62. 62.
    • Dijkstra B, Kamsma Y, Zijlstra W. Detection of gait and postures using a miniaturised triaxial accelerometer-based system: accuracy in community-dwelling older adults. Age Ageing. 2010;39(2):259–62.  https://doi.org/10.1093/ageing/afp249. Important study in measurement of PA type and gait. CrossRefPubMedGoogle Scholar
  63. 63.
    Greene BR, Doheny EP, O'Halloran A, Anne Kenny R. Frailty status can be accurately assessed using inertial sensors and the TUG test. Age Ageing. 2014;43(3):406–11.  https://doi.org/10.1093/ageing/aft176.CrossRefPubMedGoogle Scholar
  64. 64.
    Greene BR, Doheny EP, Kenny RA, Caulfield B. Classification of frailty and falls history using a combination of sensor-based mobility assessments. Physiol Meas. 2014;35(10):2053–66.  https://doi.org/10.1088/0967-3334/35/10/2053.CrossRefPubMedGoogle Scholar
  65. 65.
    Schwenk M, Mohler J, Wendel C, D'Huyvetter K, Fain M, Taylor-Piliae R, et al. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: baseline results of the Arizona frailty cohort study. Gerontology. 2015;61(3):258–67.  https://doi.org/10.1159/000369095. CrossRefPubMedGoogle Scholar
  66. 66.
    Park JH, Mancini M, Carlson-Kuhta P, Nutt JG, Horak FB. Quantifying effects of age on balance and gait with inertial sensors in community-dwelling healthy adults. Exp Gerontol. 2016;85:48–58.  https://doi.org/10.1016/j.exger.2016.09.018.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    • Manini TM. Energy expenditure and aging. Ageing Res Rev. 2010;9(1):1–11.  https://doi.org/10.1016/j.arr.2009.08.002. Excellent review of changes in EE with aging. CrossRefPubMedGoogle Scholar
  68. 68.
    Black AE, Coward WA, Cole TJ, Prentice AM. Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr. 1996;50(2):72–92.PubMedGoogle Scholar
  69. 69.
    Elia M, Ritz P, Stubbs RJ. Total energy expenditure in the elderly. Eur J Clin Nutr. 2000;54(Suppl 3):S92–103.CrossRefGoogle Scholar
  70. 70.
    Masse LC, Fulton JE, Watson KL, Mahar MT, Meyers MC, Wong WW. Influence of body composition on physical activity validation studies using doubly labeled water. J Appl Physiol (1985). 2004;96(4):1357–64.  https://doi.org/10.1152/japplphysiol.00901.2003. CrossRefGoogle Scholar
  71. 71.
    • Stalvey BT, Owsley C, Sloane ME, Ball K. The Life Space Questionnaire: a measure of the extent of mobility of older adults. J Appl Gerontol. 1999;18(4):460–78.  https://doi.org/10.1177/073346489901800404. Interesting framework for examining spatial extent of PA in older adults. CrossRefGoogle Scholar
  72. 72.
    Peel C, Baker PS, Roth DL, Brown CJ, Bodner EV, Allman RM. Assessing mobility in older adults: the UAB Study of Aging Life-Space Assessment. Phys Ther. 2005;85(10):1008–19.PubMedGoogle Scholar
  73. 73.
    Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and future directions (vol 71, pg 1, 2000). Res Q Exercise Sport. 2000;71(4):409 -.CrossRefGoogle Scholar
  74. 74.
    Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol. 2008;167(7):875–81.  https://doi.org/10.1093/aje/kwm390.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Tucker JM, Welk GJ, Beyler NK. Physical activity in U.S.: adults compliance with the physical activity Guidelines for Americans. Am J Prev Med. 2011;40(4):454–61.  https://doi.org/10.1016/j.amepre.2010.12.016.CrossRefPubMedGoogle Scholar
  76. 76.
    Butte NF, Ekelund U, Westerterp KR. Assessing physical activity using wearable monitors: measures of physical activity. Med Sci Sports Exerc. 2012;44(1 Suppl 1):S5–12.  https://doi.org/10.1249/MSS.0b013e3182399c0e.CrossRefPubMedGoogle Scholar
  77. 77.
    Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.  https://doi.org/10.2165/00007256-200434010-00001. CrossRefPubMedGoogle Scholar
  78. 78.
    Berlin JE, Storti KL, Brach JS. Using activity monitors to measure physical activity in free-living conditions. Phys Ther. 2006;86(8):1137–45.PubMedGoogle Scholar
  79. 79.
    • Ainsworth B, Cahalin L, Buman M, Ross R. The current state of physical activity assessment tools. Prog Cardiovasc Dis. 2015;57(4):387–95.  https://doi.org/10.1016/j.pcad.2014.10.005. Excellent review of wearable sensors to measure PA in older adults. CrossRefPubMedGoogle Scholar
  80. 80.
    Freedson P, Bowles HR, Troiano R, Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc. 2012;44(1 Suppl 1):S1–4.  https://doi.org/10.1249/MSS.0b013e3182399b7e.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Westerterp KR. Assessment of physical activity: a critical appraisal. Eur J Appl Physiol. 2009;105(6):823–8.  https://doi.org/10.1007/s00421-009-1000-2.CrossRefPubMedGoogle Scholar
  82. 82.
    de Groot S, Nieuwenhuizen MG. Validity and reliability of measuring activities, movement intensity and energy expenditure with the DynaPort MoveMonitor. Med Eng Phys. 2013;35(10):1499–505.  https://doi.org/10.1016/j.medengphy.2013.04.004.CrossRefPubMedGoogle Scholar
  83. 83.
    Erdmier C, Hatcher J, Lee M. Wearable device implications in the healthcare industry. J Med Eng Technol. 2016;40(4):141–8.  https://doi.org/10.3109/03091902.2016.1153738.CrossRefPubMedGoogle Scholar
  84. 84.
    • Straiton N, Alharbi M, Bauman A, Neubeck L, Gullick J, Bhindi R, et al. The validity and reliability of consumer-grade activity trackers in older, community-dwelling adults: a systematic review. Maturitas. 2018;112:85–93.  https://doi.org/10.1016/j.maturitas.2018.03.016. Excellent review of consumer grade sensors and their applications in older adults. CrossRefPubMedGoogle Scholar
  85. 85.
    •• Schrack JA, Cooper R, Koster A, Shiroma EJ, Murabito JM, Rejeski WJ, et al. Assessing daily PA in older adults: unraveling the complexity of monitors, measures, and methods. J Gerontol. 2016;71(8):1039–48.  https://doi.org/10.1093/gerona/glw026. Excellent review of wearable sensors in older adults, including details of large-scale studies that have incorporated accelerometers. CrossRefGoogle Scholar
  86. 86.
    Farina N, Lowry RG. The validity of consumer-level activity monitors in healthy older adults in free-living conditions. J Aging PA. 2018;26(1):128–35.  https://doi.org/10.1123/japa.2016-0344.CrossRefGoogle Scholar
  87. 87.
    Appelboom G, Taylor BE, Bruce E, Bassile CC, Malakidis C, Yang A, et al. Mobile phone-connected wearable motion sensors to assess postoperative mobilization. JMIR Mhealth Uhealth. 2015;3(3):e78.  https://doi.org/10.2196/mhealth.3785. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ellis K, Kerr J, Godbole S, Staudenmayer J, Lanckriet G. Hip and wrist accelerometer algorithms for free-living behavior classification. Med Sci Sports Exerc. 2016;48(5):933–40.  https://doi.org/10.1249/MSS.0000000000000840.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    • Caldas R, Mundt M, Potthast W, Buarque de Lima Neto F, Markert B. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait Posture. 2017;57:204–10.  https://doi.org/10.1016/j.gaitpost.2017.06.019. Comprehensive review of methods of computing gait measures from inertial sensors. CrossRefPubMedGoogle Scholar
  90. 90.
    •• Doherty ST, Oh P. A multi-sensor monitoring system of human physiology and daily activities. Telemed J E Health. 2012;18(3):185–92.  https://doi.org/10.1089/tmj.2011.0138. Landmark study that measured many aspects of PA, subject location, and heart rate in order to provide a comprehensive assessment. Despite excellent design and implementation, the study also identifies limitations in technology that need to be addressed. CrossRefPubMedGoogle Scholar
  91. 91.
    • Dobkin BH, Dorsch A. The promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair. 2011;25(9):788–98.  https://doi.org/10.1177/1545968311425908. Excellent review of the use of wearable sensors in continuous monitoring of PA. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Rehabilitation & Regenerative Medicine (Program in Physical Therapy), G.H. Sergievsky Center, Huntington’s Disease Center of Excellence, Center of Excellence in Alzheimer’s Disease, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations