Advertisement

Current Geriatrics Reports

, Volume 6, Issue 3, pp 188–195 | Cite as

Reduction of Cognitive Decline in Patients with or at High Risk for Diabetes

  • Gladys E. MaestreEmail author
Nutrition, Obesity, and Diabetes (H Florez, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nutrition, Obesity, and Diabetes

Abstract

Purpose of Review

The incidence of Alzheimer’s disease and related disorders is expected to triple by 2050. People with type 2 diabetes and prediabetes have a higher risk of cognitive dysfunction, including Alzheimer’s disease and vascular dementia. Controversy remains about when and how to prevent and treat cognitive dysfunction in people with or at high risk of diabetes.

Recent Findings

In our review of ongoing clinical trials, we have found that there has been an increase in the number of studies assessing the efficacy of pharmacological and non-pharmacological approaches to prevent or slow down cognitive impairment among people with or at high risk of diabetes.

Summary

Despite the considerable risk of cognitive impairment in people with diabetes and prediabetes, there is not enough evidence to support a specific treatment to prevent or slow mild cognitive impairment, or progression to Alzheimer’s disease or related disorders. Several ongoing trials are attempting to identify the usefulness of several compounds, as well as lifestyle changes including exercise and diet. Direct mechanisms linking diabetes to cognitive decline have not been elucidated.

Keywords

Alzheimer’s disease Dementia Mild cognitive impairment Clinical trials Insulin Prediabetes 

Abbreviations

Amyloid β-peptide

AChEI

Acetylcholinesterase inhibitors

AD

Alzheimer’s disease

AMPA

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

APOE

Apolipoprotein E

BDPP

Bioactive Dietary Polyphenol Preparation

CSF

Cerebral spinal fluid

GABA

Gamma-aminobutyric acid

GLP1

Glucagon-like peptide 1

HOMA2-IR

Homeostasis model assessment of insulin resistance

IL-6

Interleukin-6

MCI

Mild cognitive impairment

NMDA

N-Methyl-D-aspartate

TNF

Tumor necrosis factor

Notes

Acknowledgements

The author thanks the South Texas Diabetes and Obesity Institute for support during the preparation of this review.

Compliance with Ethical Standards

Conflict of Interest

Gladys Maestre reports grants from the National Institute of Aging-Fogarty International Center, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding/Support

1R01AG036469-05 from the National Institute on Aging and Fogarty International Center.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Prince M. World Alzheimer Report 2015: the global impact of dementia. London: Alzheimer’s Disease International; 2015.Google Scholar
  2. 2.
    Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–28. doi: 10.1016/S1474-4422(11)70072-2.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Portero McLellan KC, Wyne K, Villagomez ET, Hsueh WA. Therapeutic interventions to reduce the risk of progression from prediabetes to type 2 diabetes mellitus. Ther Clin Risk Manag. 2014;10:173–88. doi: 10.2147/TCRM.S39564.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    • Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. JAMA. 2015;314(10):1021–9. doi: 10.1001/jama.2015.10029. This study presents a recent prevalence estimate of diabetes in the United States. CrossRefPubMedGoogle Scholar
  5. 5.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128. doi: 10.1016/S0140-6736(12)61728-0.CrossRefPubMedGoogle Scholar
  6. 6.
    Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5(1):64–74. doi: 10.1016/S1474-4422(05)70284-2.CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012;42(5):484–91. doi: 10.1111/j.1445-5994.2012.02758.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Chowers I, Lavy S, Halpern L. Effect of insulin administered intracisternally in dogs on the glucose level of the blood and cerebrospinal fluid. Exp Neurol. 1961;3(2):197–205.CrossRefGoogle Scholar
  9. 9.
    Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272(5656):827–9.CrossRefGoogle Scholar
  10. 10.
    Hill JM, Lesniak MA, Pert CB, Roth J. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience. 1986;17(4):1127–38.CrossRefGoogle Scholar
  11. 11.
    Francis H, Stevenson R. The longer-term impacts of Western diet on human cognition and the brain. Appetite. 2013;63:119–28. doi: 10.1016/j.appet.2012.12.018.CrossRefGoogle Scholar
  12. 12.
    Ott A, Stolk RP, Hofman A, van Harskamp F, Grobbee DE, Breteler MM. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia. 1996;39(11):1392–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29–38. doi: 10.1001/archneurol.2011.233.CrossRefPubMedGoogle Scholar
  14. 14.
    Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis. 2015;45(4):1269–70. doi: 10.3233/JAD-159002.CrossRefPubMedGoogle Scholar
  15. 15.
    Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J Alzheimers Dis. 2017;57(4):1325–34. doi: 10.3233/JAD-161256.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis. 2016;51(2):501–14. doi: 10.3233/JAD-150493.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Ruis C, Biessels GJ, Gorter KJ, van den Donk M, Kappelle LJ, Rutten GE. Cognition in the early stage of type 2 diabetes. Diabetes Care. 2009;32(7):1261–5. doi: 10.2337/dc08-2143.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Crichton GE, Elias MF, Buckley JD, Murphy KJ, Bryan J, Frisardi V. Metabolic syndrome, cognitive performance, and dementia. J Alzheimers Dis. 2012;30(Suppl 2):S77–87. doi: 10.3233/JAD-2011-111022.CrossRefPubMedGoogle Scholar
  19. 19.
    Reijmer YD, van den Berg E, Ruis C, Kappelle LJ, Biessels GJ. Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metab Res Rev. 2010;26(7):507–19. doi: 10.1002/dmrr.1112.CrossRefPubMedGoogle Scholar
  20. 20.
    •• Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE, Biessels GJ. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 2015;14(3):329–40. doi: 10.1016/S1474-4422(14)70249-2. This study provides a review about general cognition that should be considered in the care of people with diabetes. CrossRefGoogle Scholar
  21. 21.
    Geijselaers SLC, Sep SJS, Schram MT, van Boxtel MPJ, Henry RMA, Verhey FRJ, et al. Insulin resistance and cognitive performance in type 2 diabetes—the Maastricht study. J Diabetes Complicat. 2017;31(5):824–30. doi: 10.1016/j.jdiacomp.2017.01.020.CrossRefGoogle Scholar
  22. 22.
    Blazquez E, Velazquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne). 2014;5:161. doi: 10.3389/fendo.2014.00161.CrossRefGoogle Scholar
  23. 23.
    Fernandez AM, Torres-Aleman I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13(4):225–39. doi: 10.1038/nrn3209.CrossRefGoogle Scholar
  24. 24.
    Potau N, Escofet MA, Martinez MC. Ontogenesis of insulin receptors in human cerebral cortex. J Endocrinol Investig. 1991;14(1):53–8. doi: 10.1007/BF03350263.CrossRefGoogle Scholar
  25. 25.
    Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol. 2013;47(1):145–71. doi: 10.1007/s12035-012-8339-9.CrossRefGoogle Scholar
  26. 26.
    Bilotta F, Lauretta MP, Tewari A, Haque M, Hara N, Uchino H, et al. Insulin and the brain: a sweet relationship with intensive care. J Intensive Care Med. 2017;32(1):48–58. doi: 10.1177/0885066615594341.CrossRefGoogle Scholar
  27. 27.
    Pardridge WM, Kang YS, Buciak JL, Yang J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm Res. 1995;12(6):807–16.CrossRefGoogle Scholar
  28. 28.
    Baura GD, Foster DM, Porte D Jr, Kahn SE, Bergman RN, Cobelli C, et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92(4):1824–30. doi: 10.1172/JCI116773.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Xaio H, Banks WA, Niehoff ML, Morley JE. Effect of LPS on the permeability of the blood-brain barrier to insulin. Brain Res. 2001;896(1–2):36–42.CrossRefGoogle Scholar
  30. 30.
    Baura GD, Foster DM, Kaiyala K, Porte D Jr, Kahn SE, Schwartz MW. Insulin transport from plasma into the central nervous system is inhibited by dexamethasone in dogs. Diabetes. 1996;45(1):86–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Craft S, Cholerton B, Baker LD. Insulin and Alzheimer’s disease: untangling the web. J Alzheimers Dis. 2013;33(Suppl 1):S263–75. doi: 10.3233/JAD-2012-129042.CrossRefPubMedGoogle Scholar
  32. 32.
    Correia SC, Santos RX, Carvalho C, Cardoso S, Candeias E, Santos MS, et al. Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer’s disease and diabetes interrelation. Brain Res. 2012;1441:64–78. doi: 10.1016/j.brainres.2011.12.063.CrossRefPubMedGoogle Scholar
  33. 33.
    Ghasemi R, Dargahi L, Haeri A, Moosavi M, Mohamed Z, Ahmadiani A. Brain insulin dysregulation: implication for neurological and neuropsychiatric disorders. Mol Neurobiol. 2013;47(3):1045–65. doi: 10.1007/s12035-013-8404-z.CrossRefPubMedGoogle Scholar
  34. 34.
    Westwood S, Liu B, Baird AL, Anand S, Nevado-Holgado AJ, Newby D, et al. The influence of insulin resistance on cerebrospinal fluid and plasma biomarkers of Alzheimer’s pathology. Alzheimers Res Ther. 2017;9(1):31. doi: 10.1186/s13195-017-0258-6.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Zemva J, Schubert M. The role of neuronal insulin/insulin-like growth factor-1 signaling for the pathogenesis of Alzheimer’s disease: possible therapeutic implications. CNS Neurol Disord Drug Targets. 2014;13(2):322–37.CrossRefPubMedGoogle Scholar
  36. 36.
    Perry T, Haughey NJ, Mattson MP, Egan JM, Greig NH. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther. 2002;302(3):881–8. doi: 10.1124/jpet.102.037481.CrossRefPubMedGoogle Scholar
  37. 37.
    Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Abeta oligomers. J Clin Invest. 2012;122(4):1339–53. doi: 10.1172/JCI57256.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Talbot K, Wang HY. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer’s disease. Alzheimers Dement. 2014;10(1 Suppl):S12–25. doi: 10.1016/j.jalz.2013.12.007.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW, et al. GLP-1 receptor stimulation reduces amyloid-beta peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis. 2010;19(4):1205–19. doi: 10.3233/JAD-2010-1314.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Xu W, Yang Y, Yuan G, Zhu W, Ma D, Hu S. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces Alzheimer disease-associated tau hyperphosphorylation in the hippocampus of rats with type 2 diabetes. J Investig Med. 2015;63(2):267–72. doi: 10.1097/JIM.0000000000000129.CrossRefPubMedGoogle Scholar
  41. 41.
    Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Ell P, Soderlund T, et al. Exenatide and the treatment of patients with Parkinson’s disease. J Clin Invest. 2013;123(6):2730–6. doi: 10.1172/JCI68295.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun. 2009;23(1):41–5. doi: 10.1016/j.bbi.2008.06.011.CrossRefPubMedGoogle Scholar
  43. 43.
    Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas-Ballina M, Valdes-Ferrer SI, et al. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol Med. 2011;17(7–8):599–606. doi: 10.2119/molmed.2011.00083.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405. doi: 10.1016/S1474-4422(15)70016-5.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Balion C, Griffith LE, Strifler L, Henderson M, Patterson C, Heckman G, et al. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology. 2012;79(13):1397–405. doi: 10.1212/WNL.0b013e31826c197f.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Etgen T, Sander D, Bickel H, Sander K, Forstl H. Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord. 2012;33(5):297–305. doi: 10.1159/000339702.CrossRefPubMedGoogle Scholar
  47. 47.
    Shen L, Ji HF. Vitamin D deficiency is associated with increased risk of Alzheimer’s disease and dementia: evidence from meta-analysis. Nutr J. 2015;14:76. doi: 10.1186/s12937-015-0063-7.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Landel V, Annweiler C, Millet P, Morello M, Feron F, Vitamin D. Cognition and Alzheimer’s disease: the therapeutic benefit is in the D-tails. J Alzheimers Dis. 2016;53(2):419–44. doi: 10.3233/JAD-150943.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Kennedy DO, Wightman EL, Reay JL, Lietz G, Okello EJ, Wilde A, et al. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr. 2010;91(6):1590–7. doi: 10.3945/ajcn.2009.28641.CrossRefPubMedGoogle Scholar
  50. 50.
    Bhatt JK, Thomas S, Nanjan MJ. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res. 2012;32(7):537–41. doi: 10.1016/j.nutres.2012.06.003.CrossRefGoogle Scholar
  51. 51.
    Witte AV, Kerti L, Margulies DS, Floel A. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci. 2014;34(23):7862–70. doi: 10.1523/JNEUROSCI.0385-14.2014.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des. 2013;19(34):6064–93.CrossRefPubMedGoogle Scholar
  53. 53.
    Azorin-Ortuno M, Yanez-Gascon MJ, Vallejo F, Pallares FJ, Larrosa M, Lucas R, et al. Metabolites and tissue distribution of resveratrol in the pig. Mol Nutr Food Res. 2011;55(8):1154–68. doi: 10.1002/mnfr.201100140.CrossRefGoogle Scholar
  54. 54.
    Andersen G, Burkon A, Sulzmaier FJ, Walker JM, Leckband G, Fuhst R, et al. High dose of dietary resveratrol enhances insulin sensitivity in healthy rats but does not lead to metabolite concentrations effective for SIRT1 expression. Mol Nutr Food Res. 2011;55(8):1197–206. doi: 10.1002/mnfr.201100292.CrossRefGoogle Scholar
  55. 55.
    Marchal J, Pifferi F, Aujard F. Resveratrol in mammals: effects on aging biomarkers, age-related diseases, and life span. Ann N Y Acad Sci. 2013;1290:67–73. doi: 10.1111/nyas.12214.CrossRefGoogle Scholar
  56. 56.
    Akar F, Pektas MB, Tufan C, Soylemez S, Sepici A, Ulus AT, et al. Resveratrol shows vasoprotective effect reducing oxidative stress without affecting metabolic disturbances in insulin-dependent diabetes of rabbits. Cardiovasc Drugs Ther. 2011;25(2):119–31. doi: 10.1007/s10557-010-6255-7.CrossRefPubMedGoogle Scholar
  57. 57.
    Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stodkilde-Jorgensen H, et al. High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes. 2013;62(4):1186–95. doi: 10.2337/db12-0975.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Bo S, Ponzo V, Evangelista A, Ciccone G, Goitre I, Saba F, et al. Effects of 6 months of resveratrol versus placebo on pentraxin 3 in patients with type 2 diabetes mellitus: a double-blind randomized controlled trial. Acta Diabetol. 2017;54(5):499–507. doi: 10.1007/s00592-017-0977-y.CrossRefPubMedGoogle Scholar
  59. 59.
    Evans HM, Howe PR, Wong RH. Effects of resveratrol on cognitive performance, mood and cerebrovascular function in post-menopausal women; a 14-week randomised placebo-controlled intervention trial. Nutrients. 2017;9(1) doi: 10.3390/nu9010027.CrossRefGoogle Scholar
  60. 60.
    Wong RH, Nealon RS, Scholey A, Howe PR. Low dose resveratrol improves cerebrovascular function in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2016;26(5):393–9. doi: 10.1016/j.numecd.2016.03.003.CrossRefGoogle Scholar
  61. 61.
    Kobe T, Witte AV, Schnelle A, Tesky VA, Pantel J, Schuchardt JP, et al. Impact of resveratrol on glucose control, hippocampal structure and connectivity, and memory performance in patients with mild cognitive impairment. Front Neurosci. 2017;11:105. doi: 10.3389/fnins.2017.00105.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94. doi: 10.1016/S1474-4422(14)70136-X.CrossRefGoogle Scholar
  63. 63.
    Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63. doi: 10.1016/S0140-6736(15)60461-5.CrossRefPubMedGoogle Scholar
  64. 64.
    Richard F, Pasquier F. Can the treatment of vascular risk factors slow cognitive decline in Alzheimer’s disease patients? J Alzheimers Dis. 2012;32(3):765–72. doi: 10.3233/JAD-2012-121012.CrossRefGoogle Scholar
  65. 65.
    Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ, et al. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology. 2011;76(17):1485–91. doi: 10.1212/WNL.0b013e318217e7a4.CrossRefGoogle Scholar
  66. 66.
    Deschaintre Y, Richard F, Leys D, Pasquier F. Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology. 2009;73(9):674–80. doi: 10.1212/WNL.0b013e3181b59bf3.CrossRefGoogle Scholar
  67. 67.
    Richard E, Kuiper R, Dijkgraaf MG, Van Gool WA for the Evaluation of vascular care in Alzheimer’s disease Study Group. Vascular care in patients with Alzheimer’s disease with cerebrovascular lesions—a randomized clinical trial. J Am Geriatr Soc. 2009;57(5):797–805.Google Scholar
  68. 68.
    Rapp SR, Luchsinger JA, Baker LD, Blackburn GL, Hazuda HP, Demos-McDermott KE, et al. Effect of a long-term intensive lifestyle intervention on cognitive function: action for health in diabetes study. J Am Geriatr Soc. 2017; doi: 10.1111/jgs.14692.CrossRefPubMedGoogle Scholar
  69. 69.
    Koch M, Jensen MK. Dietary patterns, Alzheimer’s disease and cognitive decline: recent insights. Curr Opin Lipidol. 2017;28(1):79–80. doi: 10.1097/MOL.0000000000000376.CrossRefGoogle Scholar
  70. 70.
    Deckers K, van Boxtel MP, Schiepers OJ, de Vugt M, Munoz Sanchez JL, Anstey KJ, et al. Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry. 2015;30(3):234–46. doi: 10.1002/gps.4245.CrossRefPubMedGoogle Scholar
  71. 71.
    •• Petersson SD, Philippou E. Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence. Adv Nutr. 2016;7(5):889–904. doi: 10.3945/an.116.012138. This study provides a review of evidence about the role of the mediterranean diet and cognition in old age. CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Tomata Y, Sugiyama K, Kaiho Y, Honkura K, Watanabe T, Zhang S, et al. Dietary patterns and incident dementia in elderly Japanese: the Ohsaki Cohort 2006 Study. J Gerontol A Biol Sci Med Sci. 2016;71(10):1322–8. doi: 10.1093/gerona/glw117.CrossRefPubMedGoogle Scholar
  73. 73.
    Ozawa M, Shipley M, Kivimaki M, Singh-Manoux A, Brunner EJ. Dietary pattern, inflammation and cognitive decline: the Whitehall II prospective cohort study. Clin Nutr. 2017;36(2):506–12. doi: 10.1016/j.clnu.2016.01.013.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Philippou E, Constantinou M. The influence of glycemic index on cognitive functioning: a systematic review of the evidence. Adv Nutr. 2014;5(2):119–30. doi: 10.3945/an.113.004960.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    •• Yusufov M, Weyandt LL, Piryatinsky I. Alzheimer’s disease and diet: a systematic review. Int J Neurosci. 2017;127(2):161–75. doi: 10.3109/00207454.2016.1155572. This study is a systematic review that summarizes the evidence considering diet as a protective or risk factor for Alzheimer’s disease. CrossRefPubMedGoogle Scholar
  76. 76.
    Fiocco AJ, Shatenstein B, Ferland G, Payette H, Belleville S, Kergoat MJ, et al. Sodium intake and physical activity impact cognitive maintenance in older adults: the NuAge Study. Neurobiol Aging. 2012;33(4):829 e21-8. doi: 10.1016/j.neurobiolaging.2011.07.004.CrossRefPubMedGoogle Scholar
  77. 77.
    Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaisse WJ, et al. Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A. 2014;111(47):16647–53. doi: 10.1073/pnas.1413965111.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. doi: 10.1530/JOE-15-0173.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    •• Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Haring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96(4):1169–209. doi: 10.1152/physrev.00032.2015. This study discusses recent findings about brain insulin resistance and its consequences. CrossRefPubMedGoogle Scholar
  80. 80.
    •• Simo R, Ciudin A, Simo-Servat O, Hernandez C. Cognitive impairment and dementia: a new emerging complication of type 2 diabetes-the diabetologist's perspective. Acta Diabetol. 2017;54(5):417–24. doi: 10.1007/s00592-017-0970-5. This study discusses cognitive impact of diabetes in light of the care of the people with diabetes. CrossRefPubMedGoogle Scholar
  81. 81.
    Lee PG, Cigolle C, Blaum C. The co-occurrence of chronic diseases and geriatric syndromes: the health and retirement study. J Am Geriatr Soc. 2009;57(3):511–6. doi: 10.1111/j.1532-5415.2008.02150.x.CrossRefPubMedGoogle Scholar
  82. 82.
    Iglay K, Hannachi H, Joseph Howie P, Xu J, Li X, Engel SS, et al. Prevalence and co-prevalence of comorbidities among patients with type 2 diabetes mellitus. Curr Med Res Opin. 2016;32(7):1243–52. doi: 10.1185/03007995.2016.1168291.CrossRefPubMedGoogle Scholar
  83. 83.
    •• Marathe PH, Gao HX, Close KL. American Diabetes Association standards of medical care in diabetes 2017. J Diabetes. 2017;9(4):320–4. doi: 10.1111/1753-0407.12524. This study discusses the most recent guidelines for care of people with diabetes. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Division of NeurosciencesUniversity of Texas Rio Grande Valley School of MedicineBrownsvilleUSA

Personalised recommendations