Advertisement

Current Geriatrics Reports

, Volume 6, Issue 3, pp 196–201 | Cite as

Alternative Fixation in Osteoporotic Fractures

  • Daniela Tafur
  • David Alejandro Cabrera
  • Julián Salavarrieta
  • Carlos Mario OlarteEmail author
  • Rodrigo Fernando PesántezEmail author
Geriatric Orthopedics (E Meinberg, Section Editor)
  • 98 Downloads
Part of the following topical collections:
  1. Topical Collection on Geriatric Orthopedics

Abstract

Purpose of Review

The goal of this paper is to review the current available literature in alternative fixation in osteoporotic fractures, including the roles of locking plates, polyaxial screws, bone augmentation techniques, arthroplasty, and implant coating, as well as the role of co-managed care.

Recent Findings

Bone mineral density has a definitive role in fixation failure in osteoporotic bone; in some regions, such as the femoral head, if the BMD is below 250 mg/cm3, the failure rate will increase; if these areas can be identified and the fixation strength on them improved, the failure will decrease. In order to improve the fixation strength, several strategies have been explored: locking plates, polyaxial plates and screws, augmentation of the bone with cement or bone substitutes, implant coating, and at last, the use of arthroplasty as primary treatment in severe osteoporosis and periarticular and articular fractures.

Summary

Osteoporotic fracture care continues to be a challenge, especially in fracture fixation. There has been recent improvement in the approach to these complex injuries, starting with orthogeriatric co-management models of care to improve patient care and outcomes. Additionally, surgical options have improved through advances in surgical techniques, augmentation of proximal femur and proximal humerus fractures, locking polyaxial implants, and improved coating of implants and arthroplasty.

Keywords

Osteoporosis Fragility fractures Fracture fixation Implant augmentation Orthogeriatrics 

Notes

Compliance with Ethical Standards

Conflict of Interest

Daniela Tafur reports grants from OTA, outside the submitted work.

Carlos Olarte reports payment as a speaker from DPS and Lilly and an international grant for research from OTA.

David Cabrera, Julian Salavarrieta, and Rodrigo Fernando Pesantez declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:465–75.CrossRefGoogle Scholar
  2. 2.
    •• Kammerlander C, Neuerburg C, Verlaan J-J, Schmoelz W, Miclau T, Larsson S. The use of augmentation techniques in osteoporotic fracture fixation. Injury. 2016;47(Suppl 2):S36–43. This is a great review of the current techniques for fracture augmentation in osteoporotic bone. CrossRefGoogle Scholar
  3. 3.
    Goldhahn S, Kralinger F, Rikli D, Marent M, Goldhahn J. Does osteoporosis increase complication risk in surgical fracture treatment? A protocol combining new endpoints for two prospective multicentre open cohort studies. BMC Musculoskelet Disord. 2010;11:256.CrossRefGoogle Scholar
  4. 4.
    Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12:6–15.CrossRefGoogle Scholar
  5. 5.
    Nikolaou VS, Efstathopoulos N, Kontakis G, Kanakaris NK, Giannoudis PV. The influence of osteoporosis in femoral fracture healing time. Injury. 2009;40:663–8.CrossRefGoogle Scholar
  6. 6.
    Goldhahn S, Sawaguchi T, Audigé L, Mundi R, Hanson B, Bhandari M, et al. Complication reporting in orthopaedic trials. A systematic review of randomized controlled trials. J Bone Joint Surg Am. 2009;91:1847–53.CrossRefGoogle Scholar
  7. 7.
    •• Konstantinidis L, Helwig P, Hirschmüller A, Langenmair E, Südkamp NP, Augat P. When is the stability of a fracture fixation limited by osteoporotic bone? Injury. 2016;47(Suppl 2):S27–32. Looks for the threshold value for bone quality beyond which the risk of fracture fixation failure increases, in intertrochanteric fractures it is 250 mg/cm3. CrossRefGoogle Scholar
  8. 8.
    Gautier E, Perren SM, Cordey J. Effect of plate position relative to bending direction on the rigidity of a plate osteosynthesis. A theoretical analysis. Injury. 2000;31(Suppl 3):C14–20.CrossRefGoogle Scholar
  9. 9.
    Giannoudis PV, Schneider E. Principles of fixation of osteoporotic fractures. J Bone Joint Surg Br. 2006;88:1272–8.CrossRefGoogle Scholar
  10. 10.
    Tejwani NC, Guerado E. Improving fixation of the osteoporotic fracture: the role of locked plating. J Orthop Trauma. 2011;25(Suppl 2):S56–60.CrossRefGoogle Scholar
  11. 11.
    Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. J Orthop Trauma. 2004;18:488–93.CrossRefGoogle Scholar
  12. 12.
    Hanschen M, Aschenbrenner IM, Fehske K, et al. Mono- versus polyaxial locking plates in distal femur fractures: a prospective randomized multicentre clinical trial. Int Orthop. 2014;38:857–63.CrossRefGoogle Scholar
  13. 13.
    El-Zayat BF, Efe T, Ruchholtz S, Khatib S, Timmesfeld N, Krüger A, et al. Mono- versus polyaxial locking plates in distal femur fractures—a biomechanical comparison of the non-contact-bridging- (NCB) and the PERILOC-plate. BMC Musculoskelet Disord. 2014;15:369.CrossRefGoogle Scholar
  14. 14.
    Lenz M, Wahl D, Gueorguiev B, Jupiter JB, Perren SM. Concept of variable angle locking—evolution and mechanical evaluation of a recent technology. J Orthop Res. 2015;33:988–92.CrossRefGoogle Scholar
  15. 15.
    Lampropoulou-Adamidou K, Tosounidis TH, Kanakaris NK, Ekkernkamp A, Wich M, Giannoudis PV. The outcome of Polyax locked plating system for fixation distal femoral non-implant related and periprosthetic fractures. Injury. 2015;46(Suppl 5):S18–24.CrossRefGoogle Scholar
  16. 16.
    Bekler H, Bulut G, Usta M, Gökçe A, Okyar F, Beyzadeoğlu T. The contribution of locked screw-plate fixation with varying angle configurations to stability of osteoporotic fractures: an experimental study. Acta Orthop Traumatol Turc. 2008;42:125–9.PubMedGoogle Scholar
  17. 17.
    Kammerlander C, Erhart S, Doshi H, Gosch M, Blauth M. Principles of osteoporotic fracture treatment. Best Pract Res Clin Rheumatol. 2013;27:757–69.CrossRefGoogle Scholar
  18. 18.
    Mariconda M, Costa G, Misami M, Recano P, Balato G, Rizzo M. Ambulatory ability and personal independence after hemiarthroplasty and total arthroplasty for intracapsular hip fracture: a prospective comparative study. J Arthroplast. 2017;32(2):447–52.CrossRefGoogle Scholar
  19. 19.
    Mariconda M, Costa GG, Cerbasi S, Recano P, Orabona G, Gambacorta M, et al. Factors predicting mobility and the change in activities of daily living after hip fracture: a 1-year prospective cohort study. J Orthop Trauma. 2016;30(2):71–7.CrossRefGoogle Scholar
  20. 20.
    Moroni A, Larsson S, Hoang Kim A, Gelsomini L, Giannoudis PV. Can we improve fixation and outcomes? Use of bone substitutes. J Orthop Trauma. 2009;23:422–5.CrossRefGoogle Scholar
  21. 21.
    Lobo-Escolar A, Joven E, Iglesias D, Herrera A. Predictive factors for cutting-out in femoral intramedullary nailing. Injury. 2010;41:1312–6.CrossRefGoogle Scholar
  22. 22.
    Kammerlander C, Doshi H, Gebhard F, Scola A, Meier C, Linhart W, et al. Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg. 2014;134:343–9.CrossRefGoogle Scholar
  23. 23.
    Namdari S, Rabinovich R, Scolaro J, Baldwin K, Bhandari M, Mehta S. Absorbable and non-absorbable cement augmentation in fixation of intertrochanteric femur fractures: systematic review of the literature. Arch Orthop Trauma Surg. 2013;133:487–94.CrossRefGoogle Scholar
  24. 24.
    Eriksson F, Mattsson P, Larsson S. The effect of augmentation with resorbable or conventional bone cement on the holding strength for femoral neck fracture devices. J Orthop Trauma. 2002;16:302–10.CrossRefGoogle Scholar
  25. 25.
    Unger S, Erhart S, Kralinger F, Blauth M, Schmoelz W. The effect of in situ augmentation on implant anchorage in proximal humeral head fractures. Injury. 2012;43:1759–63.CrossRefGoogle Scholar
  26. 26.
    Röderer G, Scola A, Schmölz W, Gebhard F, Windolf M, Hofmann-Fliri L. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury. 2013;44:1327–32.CrossRefGoogle Scholar
  27. 27.
    Röderer G, Brianza S, Schiuma D, Schwyn R, Scola A, Gueorguiev B, et al. Mechanical assessment of local bone quality to predict failure of locked plating in a proximal humerus fracture model. Orthopedics. 2013;36:e1134–40.CrossRefGoogle Scholar
  28. 28.
    Haentjens P, Lamraski G. Endoprosthetic replacement of unstable, comminuted intertrochanteric fracture of the femur in the elderly, osteoporotic patient: a review. Disabil Rehabil. 2005;27:1167–80.CrossRefGoogle Scholar
  29. 29.
    Larsson S, Procter P. Optimising implant anchorage (augmentation) during fixation of osteoporotic fractures: is there a role for bone-graft substitutes? Injury. 2011;42(Suppl 2):S72–6.CrossRefGoogle Scholar
  30. 30.
    Moroni A, Faldini C, Rocca M, Stea S, Giannini S. Improvement of the bone-screw interface strength with hydroxyapatite-coated and titanium-coated AO/ASIF cortical screws. J Orthop Trauma. 2002;16:257–63.CrossRefGoogle Scholar
  31. 31.
    Moroni A, Orienti L, Stea S, Visentin M. Improvement of the bone-pin interface with hydroxyapatite coating: an in vivo long-term experimental study. J Orthop Trauma. 1996;10:236–42.CrossRefGoogle Scholar
  32. 32.
    Sandén B, Olerud C, Johansson C, Larsson S. Improved extraction torque of hydroxyapatite-coated pedicle screws. Eur Spine J. 2000;9:534–7.CrossRefGoogle Scholar
  33. 33.
    Sandén B, Olerud C, Petrén-Mallmin M, Larsson S. Hydroxyapatite coating improves fixation of pedicle screws. A clinical study. J Bone Joint Surg Br. 2002;84:387–91.CrossRefGoogle Scholar
  34. 34.
    Moroni A, Faldini C, Hoang-Kim A, Pegreffi F, Giannini S. Alendronate improves screw fixation in osteoporotic bone. J Bone Joint Surg Am. 2007;89:96–101.CrossRefGoogle Scholar
  35. 35.
    Wermelin K, Aspenberg P, Linderbäck P, Tengvall P. Bisphosphonate coating on titanium screws increases mechanical fixation in rat tibia after two weeks. J Biomed Mater Res A. 2008;86:220–7.CrossRefGoogle Scholar
  36. 36.
    Jakobsen T, Baas J, Kold S, Bechtold JE, Elmengaard B, Søballe K. Local bisphosphonate treatment increases fixation of hydroxyapatite-coated implants inserted with bone compaction. J Orthop Res. 2009;27:189–94.CrossRefGoogle Scholar
  37. 37.
    Im G-I, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004;25:4105–15.CrossRefGoogle Scholar
  38. 38.
    Rammelt S, Heck C, Bernhardt R, Bierbaum S, Scharnweber D, Goebbels J, et al. In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia. J Orthop Res. 2007;25:1052–61.CrossRefGoogle Scholar
  39. 39.
    Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials. 2006;27:5561–71.CrossRefGoogle Scholar
  40. 40.
    Zainali K, Danscher G, Jakobsen T, Jakobsen SS, Baas J, Møller P, et al. Effects of gold coating on experimental implant fixation. J Biomed Mater Res A. 2009;88:274–80.CrossRefGoogle Scholar
  41. 41.
    Jakobsen SS, Baas J, Jakobsen T, Soballe K. Biomechanical implant fixation of CoCrMo coating inferior to titanium coating in a canine implant model. J Biomed Mater Res A. 2010;94:180–6.CrossRefGoogle Scholar
  42. 42.
    Giannoudis P, Tzioupis C, Almalki T, Buckley R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury. 2007;38(Suppl 1):S90–9.CrossRefGoogle Scholar
  43. 43.
    Schneider E, Goldhahn J, Burckhardt P. The challenge: fracture treatment in osteoporotic bone. Osteoporos Int. 2005;16(Suppl 2):S1–2.CrossRefGoogle Scholar
  44. 44.
    Åkesson K, Marsh D, Mitchell PJ, McLellan AR, Stenmark J, Pierroz DD, et al. Capture the fracture: a best practice framework and global campaign to break the fragility fracture cycle. Osteoporos Int. 2013;24:2135–52.CrossRefGoogle Scholar
  45. 45.
    Miller AN, Lake AF, Emory CL. Establishing a fracture liaison service: an orthopaedic approach. J Bone Joint Surg Am. 2015;97:675–81.CrossRefGoogle Scholar
  46. 46.
    Eekman DA, van Helden SH, Huisman AM, Verhaar HJJ, Bultink IEM, Geusens PP, et al. Optimizing fracture prevention: the fracture liaison service, an observational study. Osteoporos Int. 2014;25:701–9.CrossRefGoogle Scholar
  47. 47.
    Mitchell PJ, Chem C. Secondary prevention and estimation of fracture risk. Best Pract Res Clin Rheumatol. 2013;27:789–803.CrossRefGoogle Scholar
  48. 48.
    Ahmed M, Durcan L, O’Beirne J, Quinlan J, Pillay I. Fracture liaison service in a non-regional orthopaedic clinic—a cost-effective service. Ir Med J. 2012;105(24):26–7.Google Scholar
  49. 49.
    Suarez S, Pesantez RF, Diaz ME, Sanchez D, Tristancho LJ, Vanegas MV, et al. Impact on hip fracture mortality after the establishment of an orthogeriatric care program in a Colombian hospital. J Aging Health. 2016; doi: 10.1177/0898264316636839.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Daniela Tafur
    • 1
  • David Alejandro Cabrera
    • 1
  • Julián Salavarrieta
    • 1
  • Carlos Mario Olarte
    • 1
    Email author
  • Rodrigo Fernando Pesántez
    • 1
    Email author
  1. 1.Department of Orthopaedic SurgeryFundación Santa Fe de BogotáBogotáColombia

Personalised recommendations