Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Nanocrystalline Nickel Powder and Co, Mo, Ta, and Al Additions on Isothermal Oxidation Behavior of Ni–17Cr Alloy

  • 29 Accesses


In this paper, the effect of nanocrystalline nickel powder developed via high-energy ball milling process and the addition of Co, Mo, Ta, and Al on the isothermal oxidation behavior of Ni–17Cr binary alloy developed by spark plasma sintering system was investigated. The oxidation behavior of the sintered alloys was studied in air at 1100 °C for exposure period up to 312 h. The oxidation rate and kinetics show that the addition of Al and nanocrystalline nickel enhances the oxidation resistance of the binary alloy followed by Mo, Co, and Ta in their reducing order. The formation of the chromia scale was common to all the sintered alloys investigated as confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    B.J. Babalola, M.B. Shongwe, B.A. Obadele, P.A. Olubambi, Densification, microstructure and mechanical properties of spark plasma sintered Ni–17%Cr binary alloys. Int. J. Adv. Manuf. Technol. 101, 8 (2018)

  2. 2.

    P. Huang, R. Liu, X.J. Wu, M.X. Yao, Mechanical properties and corrosion resistance of a novel Ni–Cr–Mo alloy. Adv. Eng. Mater. 9, 60–64 (2007)

  3. 3.

    D.W. Yun, S.M. Seo, H.W. Jeong, I.S. Kim, Y.S. Yoo, Modelling high temperature oxidation behaviour of Ni–Cr–W–Mo alloys with Bayesian neural network. J. Alloys Compd. 587, 105–112 (2014)

  4. 4.

    B.J. Babalola, M.B. Shongwe, A.L. Rominiyi, S.O. Jeje, P.A. Olubambi, A study of nanocrystalline nickel powders developed via high-energy ball milling. Int. J. Adv. Manuf. Technol. 102, 3657–3665 (2019)

  5. 5.

    Y.-B. Hu, L. Zhang, C.-Q. Cheng, P.-T. Zhao, G.-P. Guo, J. Zhao, Oxidation behavior of the nickel-based superalloy DZ125 at 980 °C. Acta Metall. Sin. (Engl. Lett.) 30, 857–862 (2017)

  6. 6.

    L. Wang, W.-G. Jiang, X.-W. Li, J.-S. Dong, W. Zheng, H. Feng et al., Effect of surface roughness on the oxidation behavior of a directionally solidified Ni-based superalloy at 1100 °C. Acta Metall. Sin. (Engl. Lett.) 28, 381–385 (2015)

  7. 7.

    S.-J. Park, S.-M. Seo, Y.-S. Yoo, H.-W. Jeong, H. Jang, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys. Corros. Sci. 90, 305–312 (2015)

  8. 8.

    B.J. Babalola, N. Maledi, M.B. Shongwe, M.O. Bodunrin, B.A. Obadele, P.A. Olubambi, Influence of nanocrystalline nickel powder on oxidation resistance of spark plasma sintered Ni–17Cr6.5Co1.2Mo6Al4W7.6Ta alloy. J. King Saud Univ. Eng. Sci. (2019). https://doi.org/10.1016/j.jksues.2019.01.002

  9. 9.

    A. Ul-Hamid, A.I. Mohammed, S.S. Al-Jaroudi, H.M. Tawancy, N.M. Abbas, Evolution of oxide scale on a Ni–Mo–Cr alloy at 900 °C. Mater. Charact. 58, 13–23 (2007)

  10. 10.

    A. Ul-Hamid, H. Tawancy, A. Mohammed, S. Al-Jaroudi, N. Abbas, Cyclic oxidation behaviour of a Ni–Mo–Cr alloy at 800 °C. Anti-Corros. Methods Mater. 51, 339–347 (2004)

  11. 11.

    H.T. Mallikarjuna, N.L. Richards, W.F. Caley, Effect of alloying elements and microstructure on the cyclic oxidation performance of three nickel-based superalloys. Materialia 4, 487–499 (2018)

  12. 12.

    B. Han, Y. Ma, H. Peng, L. Zheng, H. Guo, Effect of Mo, Ta, and Re on high-temperature oxidation behavior of minor Hf doped β-NiAl alloy. Corros. Sci. 102, 222–232 (2016)

  13. 13.

    P.K. Ray, M. Akinc, M.J. Kramer, Formation of multilayered scale during the oxidation of NiAl–Mo alloy. Appl. Surf. Sci. 301, 107–111 (2014)

  14. 14.

    M.J. Donachie, S.J. Donachie, Superalloys: A Technical Guide (ASM International, Cleveland, 2002)

  15. 15.

    M.C. Kushan, S.C. Uzgur, Y. Uzunonat, F. Diltemiz, ALLVAC 718 Plus™ superalloy for aircraft engine applications, in Recent Advances in Aircraft Technology (IntechOpen, 2012). https://doi.org/10.5772/38433

  16. 16.

    M.B. Shongwe, S. Diouf, M.O. Durowoju, P.A. Olubambi, M.M. Ramakokovhu, B.A. Obadele, A comparative study of spark plasma sintering and hybrid spark plasma sintering of 93W–4.9Ni–2.1Fe heavy alloy. Int. J. Refract. Met. Hard Mater. 55, 16–23 (2016)

  17. 17.

    S. Ma, Y. Yang, A. Li, S. Zhou, L. Shi, S. Wang et al., Effects of temperature on microstructure and mechanical properties of IN718 reinforced by reduced graphene oxide through spark plasma sintering. J. Alloys Compd. 767, 675–681 (2018)

  18. 18.

    A.H. Pakseresht, A.H. Javadi, M. Bahrami, F. Khodabakhshi, A. Simchi, Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: microstructural development and hot corrosion behavior. Ceram. Int. 42, 2770–2779 (2016)

  19. 19.

    T. Borkar, R. Banerjee, Influence of spark plasma sintering (SPS) processing parameters on microstructure and mechanical properties of nickel. Mater. Sci. Eng. A 618, 176–181 (2014)

  20. 20.

    B.J. Babalola, M.B. Shongwe, B.A. Obadele, P.A. Olubambi, O.O. Ayodele, A.L. Rominiyi et al., Comparative study of spark plasma sintering features on the densification of Ni–Cr binary alloys. MATEC Web Conf. 249, 01004 (2018)

  21. 21.

    A.L. Rominiyi, M.B. Shongwe, N. Maledi, B.J. Babalola, P.A. Olubambi, Synthesis, microstructural and phase evolution in Ti–2Ni and Ti–10Ni binary alloys consolidated by spark plasma sintering technique. Int. J. Adv. Manuf. Technol. 104, 1041–1049 (2019)

  22. 22.

    B.J. Babalola, M. Shongwe, A. Rominiyi, P. Lepele, The fabrication and characterization of spark plasma sintered nickel based binary alloy at different heating rate. J. Micro Nano Manuf. (2019). https://doi.org/10.1115/1.4044267

  23. 23.

    F. Naimi, L. Minier, S. Le Gallet, H. Couque, F. Bernard, Dense nanostructured nickel produced by SPS from mechanically activated powders: enhancement of mechanical properties. J. Nanomater. 2013, 3 (2013)

  24. 24.

    B. Yu, Y. Li, Y. Nie, H. Mei, High temperature oxidation behavior of a novel cobalt-nickel-base superalloy. J. Alloys Compd. 765, 1148–1157 (2018)

  25. 25.

    D. Saber, I.S. Emam, R. Abdel-Karim, High temperature cyclic oxidation of Ni based superalloys at different temperatures in air. J. Alloys Compd. 719, 133–141 (2017)

  26. 26.

    L.-F. Liu, S.-S. Wu, Y. Chen, S.-L. Lü, Oxidation behavior of RE-modified nickel-based superalloy between 950 °C and 1150 °C in air. Trans. Nonferrous Met. Soc. China 26, 1163–1169 (2016)

  27. 27.

    Y. Zhang, X. Hu, C. Li, W. Xu, Y. Zhao, Composition design, phase transitions of a new polycrystalline Ni–Cr–Co–W base superalloy and its isothermal oxidation dynamics behaviors at 1300 °C. Mater. Des. 129, 26–33 (2017)

  28. 28.

    S.M. Das, M.P. Singh, K. Chattopadhyay, Evolution of oxides and their microstructures at 800 °C in a γ–γ’ stabilised Co–Ni–Al–Mo–Ta superalloy. Corros. Sci. (2019). https://doi.org/10.1016/j.corsci.2019.02.013

  29. 29.

    D.W. Yun, S.M. Seo, H.W. Jeong, Y.S. Yoo, Effect of refractory elements and Al on the high temperature oxidation of Ni-base superalloys and modelling of their oxidation resistance. J. Alloys Compd. 710, 8–19 (2017)

Download references


The authors acknowledge the financial assistance from the National Research Foundation (NRF) of South Africa for the Grant, Unique Grant No. 99348.

Author information

Correspondence to Bukola Joseph Babalola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Babalola, B.J., Shongwe, M.B., Maledi, N. et al. Effect of Nanocrystalline Nickel Powder and Co, Mo, Ta, and Al Additions on Isothermal Oxidation Behavior of Ni–17Cr Alloy. Metallogr. Microstruct. Anal. 9, 75–85 (2020). https://doi.org/10.1007/s13632-020-00614-9

Download citation


  • Nickel-based alloys
  • Spark plasma sintering
  • High-energy ball milling
  • Oxidation
  • Nanocrystalline nickel powder