Metallography, Microstructure, and Analysis

, Volume 8, Issue 6, pp 806–814 | Cite as

Visualization and Observation of Morphological Peculiarities of Twin Formation in Mg-Based Samples After Electrically Assisted Forming

  • Silvia ReschkaEmail author
  • Gregory Gerstein
  • Andrej Dalinger
  • Sebastian Herbst
  • Florian Nürnberger
  • Stephan Zaefferer
Technical Article


By using electrically assisted forming the usually rather poor workability of magnesium can be improved. The processes taking place during these forming operations have a strong influence on the microstructure. However, the metallographic preparation of magnesium is challenging due to its low hardness and strong tendency to oxidize. Therefore, a reliable preparation method was developed that revealed the microstructural features caused by the electrically assisted forming. The different morphologies of twins caused by plastic deformation and of those caused by an electric impulse could clearly be distinguished.


Magnesium Electroplastic effect Metallographic preparation Twins 



Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 319282412.


  1. 1.
    H. Xie, X. Dong, Z. Ai, Q. Wang, F. Peng, K. Liu, F. Chen, J. Wang, Experimental investigation on electrically assisted cylindrical deep drawing of AZ31B magnesium alloy sheet. Int. J. Adv. Manuf. Technol. 2016(86), 1063–1069 (2016). CrossRefGoogle Scholar
  2. 2.
    L. Guan, G. Tang, P.K. Chu, Recent advances and challenges in electroplastic manufacturing processing of metals. J. Mater. Res. 25(7), 1215–1224 (2010). CrossRefGoogle Scholar
  3. 3.
    Z. Xu, S. Tian, F. Ding, H. Tian, Research of electroplastic rolling of AZ31Mg alloy strip. J. Mater. Process. Technol. 2007, 128–133 (2007). CrossRefGoogle Scholar
  4. 4.
    H. Nguyen-Tran, H. Oh, S. Hong, H.N. Han, J. Cao, S. Ahn, D.A. Chun, Review of electrically-assisted manufacturing. Int. J. Precis. Eng. Manuf. Green Technol. 2(4), 365–376 (2015). CrossRefGoogle Scholar
  5. 5.
    G.F. Vander Voort, Metallography Principles and Methods (ASM International, Cleveland, 1999). (ISBN-13: 978-0-87170-672-0, ISBN-10:0-87170-672-5)Google Scholar
  6. 6.
    L. Bjerregaard, K. Geels, B. Ottesen, M. Rückert, Metalog Guide (Struers, Cleveland, 2002). (ISBN 87-987767-0-3)Google Scholar
  7. 7.
    G.F. Vander Voort, BUEHLER Sum ®Met™ (Buehler, Lake Bluff, 2011). (ISBN 0-9752898-0-2)Google Scholar
  8. 8.
    ATM Advanced Materialography, Probenpräparation, Standardmethoden für die materialographische Analyse. (2016). Accessed 6 March 2019
  9. 9.
    M. Gerardin, Comptes rendus hebdomadaires des séances de l’Académie des sciences 55(1861), 727–730 (1861)Google Scholar
  10. 10.
    F.M. D’Heurle, P.S. Ho, in Thin Films—Interdiffusion and Reactions, ed. by J.M. Poate, K.N. Tu, J.W. Mayer (Wiley-Interscience, New York, 1978). (ISBN 0-4710223-8-1)Google Scholar
  11. 11.
    R.E. Hummel, in Metals and Alloys, ed. by R.E. Hummel, H.B. Huntington (AIME, New York, 1977). (ISBN 0-3173486-7-1)Google Scholar
  12. 12.
    H. Conrad, Mater. Trans. 46(2005), 1083–1087 (2005). CrossRefGoogle Scholar
  13. 13.
    L. Shichum, H. Conrad, Scr. Mater. 39(7), 847–851 (1998). CrossRefGoogle Scholar
  14. 14.
    H. Conrad, K. Jung, Mater. Manuf. Processes 19(4), 573–585 (2004). CrossRefGoogle Scholar
  15. 15.
    S.-J. Kim, S.-D. Kim, D. Yoo, J. Lee, Y. Rhyim, D. Kim, Metall. Mater. Trans. A 1, 6368–6373 (2016). CrossRefGoogle Scholar
  16. 16.
    V.I. Alshits, V.L. Indeborn, in Dislocations in Solids. Band 7, ed. by F.R.N. Nabarro (North-Holland, Amsterdam, 1986), pp. 43–111. (USBN 978-0-444-51888-0)Google Scholar
  17. 17.
    O.A. Troitskii, V.I. Likhtman, Dokl. Akad. Nauk SSSR 148, 332ff (1963)Google Scholar
  18. 18.
    O.A. Troitskii, V.I. Spitsyn, Sov. Phys. Dokl. 21, 1307–1310 (1976)Google Scholar
  19. 19.
    W.A. Salandro, J.J. Jones, C. Bunget, L. Mears, T. Roth, Electrically Assisted Forming: Modeling and Control (Springer International Publishing, Cham, 2015). (ISBN 978-3-319-08879-2)CrossRefGoogle Scholar
  20. 20.
    H.E. Friedrich, B.L. Mordlike, Magnesium Technology, Metallurgy, Design Data (Applications. Springer, Berlin, 2006). (ISBN-10 3-540-20599-3; ISBN-13 978-3-540-20599-9)Google Scholar
  21. 21.
    E. Demler, G. Gerstein, A. Dalinger, A. Epishin, D. Rodman, F. Nürnberger, Influence of high-current-densitiy impulses on the compression behavior: experiments with iron and a nickel-based alloy. J. Mater. Eng. Perform. (2016). CrossRefGoogle Scholar
  22. 22.
    X. Li, G. Tang, J. Kuang, X. Li, J. Zhu, Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling. Mater. Sci. Eng. A 2014, 404–413 (2014). CrossRefGoogle Scholar
  23. 23.
    K.D. Molodov, T. Al-Samman, D.A. Molodov, G. Gottstein, On the role of anomalous twinning in the plasticity of magnesium. Acta Mater. 103, 711–723 (2016). CrossRefGoogle Scholar
  24. 24.
    V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by moldecular-dynamics simulation. Nat. Mater. 1, 1 (2002). CrossRefGoogle Scholar
  25. 25.
    Y.T. Zhu, X.Z. Liao, X.L. Wu, Deformation twinning in nanocrystalline materials. Prog. Mater Sci. 57, 1–62 (2012). CrossRefGoogle Scholar
  26. 26.
    B. Li, E. Ma, Zonal dislocations mediating {10\(\bar{1}\)1} 10\(\bar{1}\bar{2}\) twinning in magnesium. Acta Mater. 57, 1734–1743 (2009). CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Silvia Reschka
    • 1
    Email author
  • Gregory Gerstein
    • 1
  • Andrej Dalinger
    • 1
  • Sebastian Herbst
    • 1
  • Florian Nürnberger
    • 1
  • Stephan Zaefferer
    • 2
  1. 1.Institut für WerkstoffkundeLeibniz Universität HannoverHanoverGermany
  2. 2.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany

Personalised recommendations