Study on Dynamic Recrystallization Behaviors in a Hot-Deformed FB2 Ultra-supercritical Rotor Steel

  • Fei ChenEmail author
  • He Wang
  • Hongyang Zhu
  • Zhenshan Cui
Technical Article


In the present work, hot deformation behaviors of FB2 ultra-super-critical rotor steel are investigated by isothermal compression tests under the deformation temperature range of 1323–1473 K and strain rate range of 0.01–1 s−1. The microstructure evolution of the deformed samples and the nucleation mechanism of dynamic recrystallization are studied by using electron backscatter diffraction and transmission electron microscopy. The results show that: (1) when the strain rate is higher than 0.1 s−1 and the temperature is lower than 1373 K, it easily results in a large number of substructures with relatively low-angle boundaries due to the intense work hardening effect. (2) Discontinuous dynamic recrystallization characterized by grain boundary bulging is the dominant nucleation mechanism for the studied rotor steel. (3) Geometrically necessary dislocations are sensitive to strain rate for the studied rotor steel but is less sensitive to the deformation temperature. (4) The low-angle boundaries fraction slightly increases with the increase in the Zener–Hollomon (Z) parameter under the test conditions.


Dynamic recrystallization High-temperature deformation Microstructure 



This work was financially supported by National Natural Science Foundation of China (Grant No. 51705316, 51675335).


  1. 1.
    V. Vivoda, G. Graetz, Nuclear policy and regulation in Japan after Fukushima: navigating the crisis. J. Cont. Asia. 45, 490–509 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Sayyaadi, T. Sabzaligol, Comprehensive exergetic and economic comparison of PWR and hybrid fossil fuel-PWR power plants. Energy. 35, 2953–2964 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Zecca, L. Chiari, Fossil-fuel constraints on global warming. Energy Policy. 38, 1–3 (2010)CrossRefGoogle Scholar
  4. 4.
    L. Chiari, A. Zecca, Constrains of fossil fuels depletion on global warming projections. Energy Policy. 39, 5026–5034 (2011)CrossRefGoogle Scholar
  5. 5.
    F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci. Technol. Adv. Mater. 9, 013002 (2008)CrossRefGoogle Scholar
  6. 6.
    F. Biglari, P. Lombardi, S. Budano, C.M. Davies, K.M. Nikbin, Predicting damage and failure under low cycle fatigue in a 9Cr steel. Fatigue Fract. Eng. Mater. Struct. 35, 1079–1087 (2012)CrossRefGoogle Scholar
  7. 7.
    K.C. Kim, Y.W. Ma, B.O. Kong, M.S. Kim, S.T. Kang, Effect of strain rate on low cycle fatigue with hold time in 9Cr rotor steel. Energy Mater. 17, 332–336 (2013)Google Scholar
  8. 8.
    F. Chen, Z.S. Cui, S.J. Chen, Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part Ι: dynamic recrystallization. Mater. Sci. Eng. A. 528(2011), 5073–5080 (2011)CrossRefGoogle Scholar
  9. 9.
    Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, G. Liu, Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater. Des. 55, 949–957 (2014)CrossRefGoogle Scholar
  10. 10.
    D.Q. Dong, F. Chen, Z.S. Cui, A physically-based constitutive model for SA508-III steel: modeling and experimental verification. Mater. Sci. Eng. A. 634, 103–115 (2015)CrossRefGoogle Scholar
  11. 11.
    Z.R. Zhang, X.Y. Yang, Z.Y. Xiao, J. Wang, D.X. Zhang, C.M. Liu, T. Sakai, Dynamic recrystallization behaviors of a Mg-4Y-2Nd-0.2Zn-0.5Zr alloy and the resultant mechanical properties after hot compression. Mater. Des. 97, 25–32 (2016)CrossRefGoogle Scholar
  12. 12.
    Z.P. Wan, Y. Sun, L.X. Hu, H. Yu, Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy. Mater. Des. 122, 11–20 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Rout, S. Biswas, R. Ranjan, S.K. Pal, S.B. Singh, Deformation behavior and evolution of microstructure and texture during hot compression of AISI 304LN stainless steel. Metall. Mater. Tran. A. 48, 864–880 (2018)CrossRefGoogle Scholar
  14. 14.
    F. Chen, D.S. Sui, Z.S. Cui, Static recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel. J. Mater. Eng. Perf. 23, 3034–3041 (2014)CrossRefGoogle Scholar
  15. 15.
    Y.C. Lin, Y.X. Liu, M.S. Chen, M.H. Huang, X. Ma, Z.L. Long, Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model. Mater. Des. 99, 107–114 (2016)CrossRefGoogle Scholar
  16. 16.
    D.D. Qian, F. Chen, Z.S. Cui, Static recrystallization behavior of SA508-III steel during hot deformation. J. Iron. Steel. Res. Int. 23, 466–474 (2016)CrossRefGoogle Scholar
  17. 17.
    Y.C. Lin, M.S. Chen, J. Zhong, Study of metadynamic recrystallization behaviors in a low alloy steel. J. Mater. Proc. Tech. 209, 2477–2482 (2009)CrossRefGoogle Scholar
  18. 18.
    F. Chen, Z.S. Cui, D.S. Sui, B. Fu, Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part 3: Metadynamic recrystallization. Mater. Sci. Eng. A. 540, 46–54 (2012)CrossRefGoogle Scholar
  19. 19.
    M.H. Maghsoudi, A. Zarei-Hanzaki, P. Changizian, A. Marandi, Metadynamic recrystallization behavior of AZ61 magnesium alloy. Mater. Des. 57, 487–493 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.C. Lin, X.M. Chen, M.S. Chen, Y. Zhou, D.X. Wen, D.G. He, A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy. Appl. Phys. A. 122, 601–615 (2016)CrossRefGoogle Scholar
  21. 21.
    H.R. Abedi, A. Zarei Hanzaki, Z. Liu, R. Xin, N. Haghdadi, P.D. Hodgson, Continuous dynamic recrystallization in low density steel. Mater. Des. 114, 55–64 (2017)CrossRefGoogle Scholar
  22. 22.
    Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, Z.L. Long, EBSD analysis of evolution of dynamic recrystallization grains and δ phase in a nickel-based superalloy during hot compressive deformation. Mater. Des. 97, 13–24 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, L.T. Li, EBSD study of a hot deformed nickel-based superalloy. J. Alloys Compd. 640, 101–113 (2015)CrossRefGoogle Scholar
  24. 24.
    F. Musin, A. Belyakov, R. Kaibyshev, Y. Motohashi, G. Itoh, K. Tsuzaki, Microstructure evolution in a cast 1421Al alloy during hot equal-channel angular extrusion. Rev. Adv. Mater. Sci. 25, 107–112 (2010)Google Scholar
  25. 25.
    R. Matruprasad, R. Ravi, K. Pal Surjya, B.S. Shiv, EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel. Mater. Sci. Eng. A. 711, 378–388 (2018)CrossRefGoogle Scholar
  26. 26.
    H. Yamagata, Y. Ohuchida, N. Saito, M. Otsuka, Nucleation of new grains during discontinuous dynamic recrystallization of 99.998 mass% aluminum at 453 K. Scripta Mater. 45, 1055–1061 (2001)CrossRefGoogle Scholar
  27. 27.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sic. 60, 130–207 (2014)CrossRefGoogle Scholar
  28. 28.
    K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016)CrossRefGoogle Scholar
  29. 29.
    Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, L.T. Li, EBSD study of a hot deformed nickel-based superalloy. J. All. Comp. 640, 101–113 (2015)CrossRefGoogle Scholar
  30. 30.
    F.J. Humphreys, Review grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 32, 3833–3854 (2001)CrossRefGoogle Scholar
  31. 31.
    J.J. Jonas, X. Quelennec, L. Jiang, É. Martin, The Avrami kinetics of dynamic recrystallization. Acta Mater. 57, 2748–2756 (2009)CrossRefGoogle Scholar
  32. 32.
    H. Miura, T. Sakai, R. Mogawa, J.J. Jonas, Nucleation of dynamic recrystallization and variant selection in copper bicrystals. Philos. Mag. 87, 4197–4209 (2007)CrossRefGoogle Scholar
  33. 33.
    W. Roberts, B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working. Acta Metall. 26, 801–813 (1978)CrossRefGoogle Scholar
  34. 34.
    S.P. Coryell, K.O. Findley, M.C. Mataya, E. Brown, Evolution of microstructure and texture during hot compression of a Ni–Fe–Cr superalloy. Metall. Mater. Trans. A. 43, 633–649 (2012)CrossRefGoogle Scholar
  35. 35.
    O. Rezvanian, M.A. Zikry, A.M. Rajendran, Statistically stored, geometrically necessary and grain boundary dislocation densities: microstructural representation and modelling. Proc. R. Soc. A. 463, 2833–2853 (2007)CrossRefGoogle Scholar
  36. 36.
    H. Gao, Mechanism-based strain gradient plasticity I. Theory. J. Mech. Phys. Solids. 47, 1239–1263 (1999)CrossRefGoogle Scholar
  37. 37.
    L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues. Scr. Mater. 48, 119–125 (2003)CrossRefGoogle Scholar
  38. 38.
    M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine-grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A. 527, 2738–2746 (2010)CrossRefGoogle Scholar
  39. 39.
    M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 17, 5093–5103 (2004)CrossRefGoogle Scholar
  40. 40.
    X.G. Deng, S.X. Hui, W.J. Ye, X.Y. Song, Analysis of twinning behavior of pure Ti compressed at different strain rates by schmid factor. Mater. Sci. Eng. A. 575, 15–20 (2013)CrossRefGoogle Scholar
  41. 41.
    J. Wang, I.J. Beyerlein, C.N. Tomé, An atomic and probabilistic perspective on twin nucleation in Mg. Scrip. Mater. 63, 741–746 (2010)CrossRefGoogle Scholar
  42. 42.
    Z.G. Liu, P.J. Li, L.T. Xiong, T.Y. Liu, L.J. He, High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy. Mater. Sci. Eng. A. 680, 259–269 (2017)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Plasticity Technology, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Capital Aerospace Machinery Corporation LimitedBeijingChina
  3. 3.Shanghai Heavy Machinery Plant Co LtdShanghaiChina

Personalised recommendations