Modification of an Electroplated Nickel Interlayer Surface by Annealing Heat Treatment for Diamond Deposition on Tungsten Carbide

  • A. W. Hassan
  • M. Y. Noordin
  • S. Izman
  • K. Denni
  • E. M. Nazim
Technical Article


The tungsten carbide (WC-6%Co) substrate was coated with a nickel layer using the electrochemical deposition process to suppress cobalt diffusion during diamond deposition. However, the high solubility of nickel for carbon is a major issue, which hinders diamond nucleation and growth. Annealing heat treatment was conducted on the Ni/WC-6%Co specimens to reduce the interlayer solubility for carbon and enable diamond deposition. The heat treatment process was carried out inside a high-temperature tube furnace at two different temperatures (1050 and 850 °C) for a 60-min duration. Diamond was then deposited on the electroplated and heat-treated samples in a hot filament CVD reactor. Field emission electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analyzing techniques were used to characterize the heat-treated and diamond-coated samples. The results show that the annealing process could successfully modify the nickel-coated surface composition by the diffusion of tungsten. In addition, the annealed interlayer was able to suppress cobalt diffusion and promote the nucleation and growth of a continuous diamond film on the tungsten carbide substrate.


Interlayer Annealing WC-Co Electroplated nickel Nickel–tungsten Diamond deposition 



Financial support from Universiti Teknologi Malaysia through the Post-Doctoral Fellowship Scheme and University Research Grant (No. 05H27) are gratefully acknowledged.


  1. 1.
    R. Polini, M. Barletta, G. Rubino, S. Vesco, Recent advances in the deposition of diamond coatings on Co-cemented tungsten carbides. Adv. Mater. Sci. Eng. (2012). CrossRefGoogle Scholar
  2. 2.
    C.C. Chou, J.W. Lee, Y.I. Chen, Tribological and mechanical properties of HFCVD diamond-coated WC-Co substrates with different Cr interlayers. Surf. Coat. Technol. 203, 704–708 (2008)CrossRefGoogle Scholar
  3. 3.
    B.S. Park, Y.J. Baik, K.R. Lee, K.Y. Eun, D.H. Kim, Behaviour of Co binder phase during diamond deposition on WC-Co substrate. Diam. Relat. Mater. 2, 910–917 (1993)CrossRefGoogle Scholar
  4. 4.
    S. Kubelka, R. Haubner, B. Lux, R. Steiner, G. Stingeder, M. Grasserbauer, Influences of WC-Co hard metal substrate pre-treatments with boron and silicon on low pressure diamond deposition. Diam. Relat. Mater. 3, 1360–1369 (1994)CrossRefGoogle Scholar
  5. 5.
    G. Cabral, J. Gäbler, J. Lindner, J. Grácio, R. Polini, A study of diamond film deposition on WC-Co inserts for graphite machining: effectiveness of SiC interlayers prepared by HFCVD. Diam. Relat. Mater. 17, 1008–1014 (2008)CrossRefGoogle Scholar
  6. 6.
    S.K. Sarangi, A. Chattopadhyay, A.K. Chattopadhyay, Effect of pretreatment, seeding and interlayer on nucleation and growth of HFCVD diamond films on cemented carbide tools. Int. J. Refract. Met. Hard Mater. 26(3), 220–231 (2008)CrossRefGoogle Scholar
  7. 7.
    E. Cappellia, S. Orlando, G. Mattei, A. Armigliato, Boron nitride thin films deposited by RF plasma reactive pulsed laser ablation as interlayer between WC-Co hard metals and CVD diamond films. Surf. Coat. Technol. 180–181, 184–189 (2004)CrossRefGoogle Scholar
  8. 8.
    Y.S. Li, Y. Tang, Q. Yang, S. Shimada, R. Wei, K.Y. Lee, A. Hirose, Al-enhanced nucleationand adhesion of diamond films on WC-Co substrates. Int. J. Refract. Met. Hard 26, 465–471 (2008)CrossRefGoogle Scholar
  9. 9.
    Q.P. Wei, Z.M. Yu, L. Ma, D.F. Yin, J. Ye, The effects of temperature on nanocrystalline diamond films deposited on WC-13 Wt.% Co substrate with W-C gradient layer. Appl. Surf. Sci. 256, 1322–1328 (2009)CrossRefGoogle Scholar
  10. 10.
    E. Hojman, R. Akhvlediani, A. Layyous, A. Hoffman, Diamond CVD film formation onto WC-Co substrates using a thermally nitrided Cr diffusion-barrier. Diam. Relat. Mater. 39, 65–72 (2013)CrossRefGoogle Scholar
  11. 11.
    L.A. Dobrzański, S. Skrzypek, D. Pakuła, J. Mikuła, A. Křiž, Influence of the PVD and CVD technologies on the residual macro-stresses and functional properties of the coated tool ceramics. JAMME 35(2), 162–168 (2009)Google Scholar
  12. 12.
    S.K. Pradhan, C. Nouveau, A. Vasin, M.A. Djouadi, Deposition of CrN coatings by PVD methods for mechanical application. Surf. Coat. Technol. 200(1–4), 141–145 (2005)CrossRefGoogle Scholar
  13. 13.
    A.M. Rashidi, A. Amadeh, Effect of electroplating parameters on microstructure of nanocrystalline nickel coatings. J. Mater. Sci. Technol. 26, 82–86 (2010)CrossRefGoogle Scholar
  14. 14.
    Y.J. Fei, X. Wang, X. Wang, Y. Xiong, K. Feng, The effect of additional methane during the annealing process on diamond nucleation on polished polycrystalline nickel substrates. Appl. Surf. Sci. 183, 173–181 (2001)CrossRefGoogle Scholar
  15. 15.
    Z. Sitar, W. Liu, P.C. Yang, C.A. Wolden, R. Schlesser, J.T. Prater, Heteroepitaxial nucleation of diamond on nickel. Diam. Releat. Mater. 7, 276–282 (1998)CrossRefGoogle Scholar
  16. 16.
    Y. Hayashi, N. Shiraokawa, S. Nishino, Effect of bias-enhancement in diamond nucleation and growth on nickel. Thin Solid Films 374, 268–273 (2000)CrossRefGoogle Scholar
  17. 17.
    A.W. Hassan, M.Y. Noordin, S. Izman, K. Denni, Quantitative analysis of electroplated nickel coating on hard metal. Sci. World J. (2013). CrossRefGoogle Scholar
  18. 18.
    A.W. Hassan, M.Y. Noordin, S. Izman, K. Zakiah, M.N. Engku, D. Kurniawan, Effect of carburizing process in enhancing nickel interlayer adhesion to WC-6%Co substrate and promoting diamond nucleation and growth. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. (2015). CrossRefGoogle Scholar
  19. 19.
    H.K. Srivastava, Microstructure of nickel electrodeposited from a nickel sulfamate/formamide Bath. Met. Finish. 93, 20–27 (1995)CrossRefGoogle Scholar
  20. 20.
    A.M. El-Sherik, U. Erb, Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. J. Mater. Sci. 30, 5743–5749 (1995)CrossRefGoogle Scholar
  21. 21.
    F. Keqin, C. Hongsheng, J.I. Xiong, Investigation on diffusion bonding of functionally graded WC-Co/Ni composite and stainless steel. Mater. Des. 46, 622–626 (2013)CrossRefGoogle Scholar
  22. 22.
    Z. Zhihong, H. Tatsuya, J. Hun-Chea, Microstructure and mechanical properties of diffusion bonded Sic/steel joint using W/Ni interlayer. Mater. Des. 31, 1070–1076 (2010)CrossRefGoogle Scholar
  23. 23.
    J.J. Barnes, J.G. Goedjen, D.A. Shores, A model for stress generation and relief in oxide metal systems during a temperature change. Oxid. Met. 32(5), 449–469 (1989)CrossRefGoogle Scholar
  24. 24.
    N.L. Peterson, Diffusion in Refractory Metals (Advanced Metals Research Corp Somerville Ma, Somerville, 1960)Google Scholar
  25. 25.
    B. Million, J. Kucera, Concentration dependence of diffusion of cobalt in nickel–cobalt alloys. Acta Metall. 17(3), 339–344 (1969)CrossRefGoogle Scholar
  26. 26.
    P.C. Yang, W. Zhu, J.T. Glass, Diamond nucleation on nickel substrates seeded with non-diamond carbon. J. Mater. Res. 9, 1063–1066 (1994)CrossRefGoogle Scholar
  27. 27.
    L. Ma, X. Yu, Z. Peng, Z. Fu, W. Yue, C. Wang, M. Hua, Improvement of film-to-substrate adhesion for diamond and related films by plasma-based technologies. IEEE Trans. Plasma Sci. 39, 3072–3079 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and ASM International 2019

Authors and Affiliations

  • A. W. Hassan
    • 1
    • 2
  • M. Y. Noordin
    • 1
  • S. Izman
    • 1
  • K. Denni
    • 3
  • E. M. Nazim
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Faculty of Engineering and Technical StudiesUniversity of El Imam El MahdiKostiSudan
  3. 3.Department of Mechanical EngineeringCurtin UniversityMiriMalaysia

Personalised recommendations