Advertisement

Corrosion Evaluation of Duplex and Superduplex Stainless Steel Friction Stir Welds Using Potentiodynamic Measurements and Immersion Tests in Chloride Environments

  • Larissa A. Santa Cruz
  • Igor J. Marques
  • Severino L. Urtiga Filho
  • Tahiana F. C. Hermenegildo
  • Tiago F. A. Santos
Technical Article
  • 25 Downloads

Abstract

Austenitic–ferritic stainless steels submitted to friction stir welding show good mechanical properties, although there are concerns regarding their application in marine environments, related to their corrosion performance. Friction stir welds of UNS S32101, S32205, S32750, and S32760 steels were successfully produced at 200 rpm and 100 mm/min. The corrosion resistance of the FSW joint was evaluated by application of the ASTM A923 standard method, cyclic polarization measurements, and determination of weight loss during the FeCl3 immersion test. The sodium hydroxide etch test was used to evaluate the presence of intermetallic phases. Cyclic polarization measurements of the S32205, S32750, and S32760 base metals showed good corrosion resistance, while poorer corrosion resistance was observed for S32101. Cyclic polarization tests at the friction stir welds indicated that for S32205 and S32750, the corrosion resistance was higher, compared to the respective base metals. The S32760 and S32101 welded joints showed lower noble potential and higher corrosion current density, compared to the base metals. NaOH etching indicated affected areas at the ferrite–ferrite grain boundaries for the S32760 FSW joint, which also showed a large loss of mass in ferric chloride solution, associated with the presence of deleterious intermetallic phases.

Keywords

Duplex stainless steel Superduplex stainless steel Friction stir welding Cyclic polarization Weight loss Deleterious phases 

References

  1. 1.
    R.N. Gunn, Duplex Stainless Steels: Microstructure, Properties and Applications, 1st edn. (Abington, Cambridge, 1997)CrossRefGoogle Scholar
  2. 2.
    S.S.M. Tavares, J.M. Pardal, L.D. Lima, I.N. Bastos, A.M. Nascimento, J.A. de Souza, Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750. Mater. Charact. 58, 610–616 (2007)CrossRefGoogle Scholar
  3. 3.
    J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, 2nd edn. (Wiley, Hoboken, 2005)Google Scholar
  4. 4.
    Y. Wang, D. Li, L. Sun, N. Li, M. Liu, W. Shen, H. Jing, Pitting corrosion of thermally aged cast duplex stainless steel for primary coolant pipes of nuclear power plants. Corros. Eng. Sci. Technol. 52, 447–452 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Atapour, H. Sarlak, M. Esmailzadeh, Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints. Int. J. Adv. Manuf. Technol. 83, 721–728 (2016)CrossRefGoogle Scholar
  6. 6.
    T.F.A. Santos, E.A. Torres, J.C. Lippold, A.J. Ramirez, Detailed microstructural characterization and restoration mechanisms of duplex and superduplex stainless steel friction-stir-welded joints. J. Mater. Eng. Perform. 25, 5173–5188 (2016)CrossRefGoogle Scholar
  7. 7.
    V.V. Patel, V. Badheka, A. Kumar, Friction stir processing as a novel technique to achieve superplasticity in aluminum alloys: process variables, variants, and applications. Metallogr. Microstruct. Anal. 5, 278–293 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Cui, C. Zhang, Y. Liu, X. Liu, D. Wang, H. Li, Recent progress in friction stir welding tools used for steels. J. Iron. Steel Res. Int. 25, 477–486 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Simar, J. Lecomte-Beckers, T. Pardoen, B. de Meester, Effect of boundary conditions and heat source distribution on temperature distribution in friction stir welding. Sci. Technol. Weld. Join. 11, 170–177 (2006)CrossRefGoogle Scholar
  10. 10.
    P. Cizek, B.P. Wynne, A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion. Mater. Sci. Eng. A 230, 88–94 (1997)CrossRefGoogle Scholar
  11. 11.
    L. Duprez, B.C. De Cooman, N. Akdut, Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation. Metall. Mater. Trans. A 33, 1931–1938 (2002)CrossRefGoogle Scholar
  12. 12.
    A. Momeni, K. Dehghani, X.X. Zhang, Mechanical and microstructural analysis of 2205 duplex stainless steel under hot working condition. J. Mater. Sci. 47, 2966–2974 (2012)CrossRefGoogle Scholar
  13. 13.
    A.M. Jorge, G.S. Reis, O. Balancin, Influence of the microstructure on the plastic behaviour of duplex stainless steels. Mater. Sci. Eng. A 528, 2259–2264 (2011)CrossRefGoogle Scholar
  14. 14.
    K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 65, 39–104 (2009)CrossRefGoogle Scholar
  15. 15.
    N. Haghdadi, P. Cizek, P.D. Hodgson, V. Tari, G.S. Rohrer, H. Beladi, Effect of ferrite-to-austenite phase transformation path on the interface crystallographic character distributions in a duplex stainless steel. Acta Mater. 145, 196–209 (2018)CrossRefGoogle Scholar
  16. 16.
    T.F.A. Santos, E.A.T. López, E.B. Fonseca, A.J. Ramirez, Friction stir welding of duplex and superduplex stainless steels and some aspects of microstructural characterization and mechanical performance. Mater. Res. 19, 117–131 (2016)CrossRefGoogle Scholar
  17. 17.
    T. Saeid, A. Abdollah-zadeh, H. Assadi, F. Malek Ghaini, Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel. Mater. Sci. Eng. A 496, 262–268 (2008)CrossRefGoogle Scholar
  18. 18.
    J.A. Ávila, C.O.F.T. Ruchert, P.R. Mei, R.R. Marinho, M.T.P. Paes, A.J. Ramirez, Fracture toughness assessment at different temperatures and regions within a friction stirred API 5L X80 steel welded plates. Eng. Fract. Mech. 147, 176–186 (2015)CrossRefGoogle Scholar
  19. 19.
    J.A. Ávila, R.A.R. Giorjao, J. Rodriguez, E.B. Fonseca, A.J. Ramirez, Modeling of thermal cycles and microstructural analysis of pipeline steels processed by friction stir processing. Int. J. Adv. Manuf. Technol. 98, 2611–2618 (2018)CrossRefGoogle Scholar
  20. 20.
    H.-H. Cho, S.-T. Hong, J.-H. Roh, H.-S. Choi, S.H. Kang, R.J. Steel, H.N. Han, Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel. Acta Mater. 61, 2649–2661 (2013)CrossRefGoogle Scholar
  21. 21.
    D.H. Choi, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokawa, S.B. Jung, Microstructural characterizations following friction stir welding of dissimilar alloys of low- and high-carbon steels. Mater. Trans. 52, 1500–1505 (2011)CrossRefGoogle Scholar
  22. 22.
    T.F.C. Hermenegildo, T.F.A. Santos, E.A. Torres, C.R.M. Afonso, A.J. Ramirez, Microstructural evolution of HSLA ISO 3183 X80M (API 5L X80) friction stir welded joints. Met. Mater. Int. 24, 1120–1132 (2018)CrossRefGoogle Scholar
  23. 23.
    R. Nandan, G.G. Roy, T.J. Lienert, T. Debroy, Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater. 55, 883–895 (2007)CrossRefGoogle Scholar
  24. 24.
    T.W. Nelson, S.A. Rose, Controlling hard zone formation in friction stir processed HSLA steel. J. Mater. Process. Technol. 231, 66–74 (2016)CrossRefGoogle Scholar
  25. 25.
    V.V. Patel, V.J. Badheka, A. Kumar, Influence of pin profile on the tool plunge stage in friction stir processing of Al–Zn–Mg–Cu alloy. Trans. Indian Inst. Met. 70, 1151–1158 (2017)CrossRefGoogle Scholar
  26. 26.
    T.F.A. Santos, T.F.C. Hermenegildo, C.R.M. Afonso, R.R. Marinho, M.T.P. Paes, A.J. Ramirez, Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds. Eng. Fract. Mech. 77, 2937–2945 (2010)CrossRefGoogle Scholar
  27. 27.
    ASTM G61-86: Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt- Based Alloys. ASTM International (2018)Google Scholar
  28. 28.
    ASTM A923: Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steels. ASTM International (2014)Google Scholar
  29. 29.
    H. Sarlak, M. Atapour, M. Esmailzadeh, Corrosion behavior of friction stir welded lean duplex stainless steel. Mater. Des. 1980–2015(66), 209–216 (2015)CrossRefGoogle Scholar
  30. 30.
    W. Reick, M. Pohl, A.F. Padilha, Determination of stacking fault energy of austenite in a duplex stainless steel. Steel Res. 67, 253–256 (1996)CrossRefGoogle Scholar
  31. 31.
    L. Liu, Y. Li, F. Wang, Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl. Electrochim. Acta 52, 7193–7202 (2007)CrossRefGoogle Scholar
  32. 32.
    X.Y. Wang, D.Y. Li, Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel. Electrochim. Acta 47, 3939–3947 (2002)CrossRefGoogle Scholar
  33. 33.
    Y. Yang, B. Yan, J. Li, J. Wang, The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel. Corros. Sci. 53, 3756–3763 (2011)CrossRefGoogle Scholar
  34. 34.
    T.F.A. Santos, R.R. Marinho, M.T.P. Paes, A.J. Ramirez, Microstructure evaluation of UNS S32205 duplex stainless steel friction stir welds. Rem Rev. Esc. Minas. 66, 187–191 (2013)CrossRefGoogle Scholar
  35. 35.
    T. Otárola, S. Hollner, B. Bonnefois, M. Anglada, L. Coudreuse, A. Mateo, Embrittlement of a superduplex stainless steel in the range of 550–700 °C. Eng. Fail. Anal. 12, 930–941 (2005)CrossRefGoogle Scholar
  36. 36.
    N. Llorca-Isern, H. López-Luque, I. López-Jiménez, M.V. Biezma, Identification of sigma and chi phases in duplex stainless steels. Mater. Charact. 112, 20–29 (2016)CrossRefGoogle Scholar
  37. 37.
    E.A. de Pauli, C.G. Schön, S.D. Brandi, Multicomponent phase diagram of lean duplex stainless steel UNS S82441 and its application to evaluate the microstructure in the heat affected zone. J. Phase Equilibria Diffus. 38, 332–342 (2017)CrossRefGoogle Scholar
  38. 38.
    J.-K. Du, C.-H. Wang, K.-C. Wang, K.-K. Chen, TEM analysis of 2205 duplex stainless steel to determine orientation relationship between M23C6 carbide and austenite matrix at 950 °C. Intermetallics 45, 80–83 (2014)CrossRefGoogle Scholar
  39. 39.
    E.C. Souza, S.M. Rossitti, J.M.D.A. Rollo, Influence of chloride ion concentration and temperature on the electrochemical properties of passive films formed on a superduplex stainless steel. Mater. Charact. 61, 240–244 (2010)CrossRefGoogle Scholar
  40. 40.
    D.M. Escriba, E. Materna-Morris, R.L. Plaut, A.F. Padilha, Chi-phase precipitation in a duplex stainless steel. Mater. Charact. 60, 1214–1219 (2009)CrossRefGoogle Scholar
  41. 41.
    S.-B. Kim, K.-W. Paik, Y.-G. Kim, Effect of Mo substitution by W on high temperature embrittlement characteristics in duplex stainless steels. Mater. Sci. Eng. A 247, 67–74 (1998)CrossRefGoogle Scholar
  42. 42.
    G.T. Burstein, D. Sazou, in Passivity and Localized Corrosion, Reference Module in Materials Science and Materials Engineering. (Elsevier, 2016)Google Scholar
  43. 43.
    P.C. Pistorius, G.T. Burstein, Metastable pitting corrosion of stainless steel and the transition to stability. Philos. Trans. R. Soc. Lond. Ser. Phys. Eng. Sci. 341, 531–559 (1992)Google Scholar
  44. 44.
    R.G. Kelly, Electrochemical Techniques in Corrosion Science and Engineering, 1st edn. (Dekker, New York, 2003)Google Scholar
  45. 45.
    C.-O.A. Olsson, D. Landolt, Passive films on stainless steels—chemistry, structure and growth. Electrochim. Acta 48, 1093–1104 (2003)CrossRefGoogle Scholar
  46. 46.
    M. Magnani, M. Terada, A.O. Lino, V.P. Tallo, E.B. Fonseca, T.F.A. Santos, A.J. Ramirez, Microstructural and electrochemical characterization of friction stir welded duplex stainless steels. Int. J. Electrochem. Sci. 9, 2966–2977 (2014)Google Scholar
  47. 47.
    M. Serdar, L.V. Žulj, D. Bjegović, Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment. Corros. Sci. 69, 149–157 (2013)CrossRefGoogle Scholar
  48. 48.
    Y. Guo, J. Hu, J. Li, L. Jiang, T. Liu, Y. Wu, Effect of annealing temperature on the mechanical and corrosion behavior of a newly developed novel lean duplex stainless steel. Mater. Basel Switz. 7, 6604–6619 (2014)Google Scholar
  49. 49.
    L. Zhang, W. Zhang, Y. Jiang, B. Deng, D. Sun, J. Li, Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101. Electrochim. Acta 54, 5387–5392 (2009)CrossRefGoogle Scholar
  50. 50.
    T.F.A. Santos, H.S. Idagawa, A.J. Ramirez, Thermal history in UNS S32205 duplex stainless steel friction stir welds. Sci. Technol. Weld. Join. 19, 150–156 (2014)CrossRefGoogle Scholar
  51. 51.
    J. Chen, Z. Qin, T. Martino, D.W. Shoesmith, Effect of chloride on Cu corrosion in anaerobic sulphide solutions. Corros. Eng. Sci. Technol. 52, 40–44 (2017)CrossRefGoogle Scholar
  52. 52.
    S. Mischler, A. Vogel, H.J. Mathieu, D. Landolt, The chemical composition of the passive film on Fe24Cr and Fe24Cr11Mo studied by AES, XPS and SIMS. Corros. Sci. 32, 925–944 (1991)CrossRefGoogle Scholar
  53. 53.
    G.T. Burstein, A hundred years of Tafel’s equation: 1905–2005. Corros. Sci. 47, 2858–2870 (2005)CrossRefGoogle Scholar
  54. 54.
    NACE Standard RP0775: Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operations. NACE International (2005)Google Scholar
  55. 55.
    H. Tan, Y. Jiang, B. Deng, T. Sun, J. Xu, J. Li, Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750. Mater. Charact. 60, 1049–1054 (2009)CrossRefGoogle Scholar
  56. 56.
    L. Garfias-Mesias, J. Sykes, Metastable pitting in 25 Cr duplex stainless steel. Corros. Sci. 41, 959–987 (1999)CrossRefGoogle Scholar
  57. 57.
    K. Di Schino, J.M. Kenny, Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels. J. Mater. Sci. Lett. 21, 1631–1634 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Center of NanotechnologyCentro de Tecnologias Estratégicas do Nordeste, CETENERecifeBrazil

Personalised recommendations