Metallography, Microstructure, and Analysis

, Volume 8, Issue 1, pp 109–117 | Cite as

Effect of SIMA Process on Microstructure and Wear Behavior of Al-Mg2Si-3% Ni Composite

  • Hesam Pourfallah
  • Mohammad ShahmiriEmail author
Technical Article


The microstructural evolution and wear behavior of Al-Mg2Si-3% Ni in situ composite during strain-induced melt-activated (SIMA) process were investigated in this study. In order to induce strain in samples, they were cold deformed by the compression ratio of 10% reduction. Then, they were isothermally re-heated at 540 °C for 20, 40 and 60 min. It was observed some cracks in primary Mg2Si particles which lead to reduce the size of these particles and distribute more uniformly in matrix. Also, they became more globular after SIMA process. Furthermore, the brittle network of eutectic phase has altered remarkably during this process from flake-like to rod- or dot-like. The wear resistance of specimens improved remarkably after SIMA process. It was found that this improvement can attribute to microstructural changes, especially eutectic Mg2Si phase, because this microstructure can curb the crack nucleation in delamination mechanism and consequently reduces the wear rate.


Metal–matrix composite SIMA process Al-Mg2Si Microstructure Wear behavior 


  1. 1.
    M. Emamy, M. Khodadadi, A.H. Raouf, N. Nasiri, The influence of Ni addition and hot-extrusion on the microstructure and tensile properties of Al-15%Mg2Si composite. Mater. Des. 46, 381–390 (2013)CrossRefGoogle Scholar
  2. 2.
    R. Hadian, M. Emamy, N. Varahram, N. Nemati, The effect of Li on the tensile properties of cast Al-Mg2Si metal matrix composite. Mater. Sci. Eng. A 490(1–2), 250–257 (2008)CrossRefGoogle Scholar
  3. 3.
    M.R. Ghorbani, M. Emamy, N. Nemati, Microstructural and mechanical characterization of Al-15%Mg2Si composite containing chromium. Mater. Des. 32(8–9), 4262–4269 (2011)CrossRefGoogle Scholar
  4. 4.
    Q.D. Qin, Y.G. Zhao, W. Zhou, P.J. Cong, Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite. Mater. Sci. Eng. A 447, 186–191 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Hekmat-Ardakan, F. Ajersch, Effect of conventional and rheocasting processes on microstructural characteristics of hypereutectic Al–Si–Cu–Mg alloy with variable Mg content. J. Mater. Process. Technol. 210(5), 767–775 (2010)CrossRefGoogle Scholar
  6. 6.
    Q.D. Qin, Y.G. Zhao, W. Zhou, Dry sliding wear behavior of Mg2Si/Al composites against automobile friction material. Wear 264(7–8), 654–661 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Hekmat-Ardakan, F. Ajersch, Effect of isothermal ageing on the semi-solid microstructure of rheoprocessed and partially remelted of A390 alloy with 10% Mg addition. Mater. Charact. 61(8), 778–785 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Hekmat-Ardakan, F. Ajersch, Thermodynamic evaluation of hypereutectic Al-Si (A390) alloy with addition of Mg. Acta Mater. 58(9), 3422–3428 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, Microstructural evolution of the In situ Al-15wt.%Mg2Si composite with extra Si contents. Scripta Mater. 42, 1101–1106 (2000)CrossRefGoogle Scholar
  10. 10.
    M. Azarbarmas, M. Emamy, M. Alipour, Study on fracture behaviour of Al-15%Mg2Si metal matrix composite with and without beryllium additions. Mater. Sci. 46, 6856–6862 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Emamy, R. Khorshidi, A.H. Raouf, The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite. Mater. Sci. Eng. A 528(13–14), 4337–4342 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Azarbarmas, M. Emamy, J. Rassizadehghani, M. Alipour, M. Karamouz, The influence of beryllium addition on the microstructure and mechanical properties of Al-15%Mg2Si in situ metal matrix composite. Mater. Sci. Eng. A 528(28), 8205–8211 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Emamy, H.R. Jafari Nodooshan, A. Malekan, The microstructure, hardness and tensile properties of Al-15%Mg2Si in situ composite with yttrium addition. Mater. Des. 32(8–9), 4559–4566 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Emamy, N. Nemati, A. Heidarzadeh, The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al-15% Mg2Si composite. Mater. Sci. Eng. A 527(12), 2998–3004 (2010)CrossRefGoogle Scholar
  15. 15.
    M.R. Ghorbani, M. Emamy, R. Khorshidi, J. Rasizadehghani, A.R. Emami, Effect of Mn addition on the microstructure and tensile properties of Al-15%Mg2Si composite. Mater. Sci. Eng. A 550, 191–198 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Hadian, M. Emamy, J. Campbell, Modification of cast Al-Mg2Si metal matrix composite by Li. Metall. Mater. Trans. B 408, 822–832 (2009)CrossRefGoogle Scholar
  17. 17.
    R. Khorshidi, A.H. Raouf, M. Emamy, J. Campbell, The study of Li effect on the microstructure and tensile properties of cast Al-Mg2Si metal matrix composite. J. Alloys Compd. 509(37), 9026–9033 (2011)CrossRefGoogle Scholar
  18. 18.
    N. Nasiri, M. Emamy, A. Malekan, Microstructural evolution and tensile properties of the in situ Al-15%Mg2Si composite with extra Si contents. Mater. Des. 37, 215–222 (2012)CrossRefGoogle Scholar
  19. 19.
    Q.D. Qin, Y.G. Zhao, C. Liu, P.J. Cong, W. Zhou, Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite. J. Alloys Compd. 435, 135–142 (2007)Google Scholar
  20. 20.
    Y.G. Zhao, Q.D. Qin, Y.Q. Zhao, Y.H. Liang, Q.C. Jiang, In situ Mg2Si/Al-Si composite modified by K2TiF6. Mater. Lett. 58(16), 2192–2194 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Malekan, M. Emamy, J. Rassizadehghani, A.R. Emami, The effect of solution temperature on the microstructure and tensile properties of Al-15%Mg2Si composite. Mater. Des. 32(5), 2701–2709 (2011)CrossRefGoogle Scholar
  22. 22.
    Q.D. Qin, Y.G. Zhao, P.J. Cong, W. Zhou, B. Xu, Semisolid microstructure of Mg2Si/Al composite by cooling slope cast and its evolution during partial remelting process. Mater. Sci. Eng. A 444, 99–103 (2007)CrossRefGoogle Scholar
  23. 23.
    Q.D. Qin, Y.G. Zhao, C. Liu, P.J. Cong, W. Zhou, Y.H. Liang, Effect of holding temperature on semisolid microstructure of Mg2Si/Al composite. J. Alloys Compd. 416(1–2), 143–147 (2006)CrossRefGoogle Scholar
  24. 24.
    Q.D. Qin, Y.G. Zhao, K. Xiu, W. Zhou, Y.H. Liang, Microstructure evolution of in situ Mg2Si/Al-Si-Cu composite in semisolid remelting processing. Mater. Sci. Eng. A 407, 196–200 (2005)CrossRefGoogle Scholar
  25. 25.
    Z. Fan, Semisolid metal processing. Int. Mater. Rev. 47, 49–85 (2002)CrossRefGoogle Scholar
  26. 26.
    M.C. Flemings, Behavior of metal alloys in the semisolid state. Metall. Trans. A 22, 957–981 (1991)CrossRefGoogle Scholar
  27. 27.
    T. Haga, R. Nakamura, R. Tago, H. Watari, Effects of casting factors of cooling slope on semisolid condition. Trans. Nonferrous Met. Soc. China 20(Supplement 3), s968–s972 (2010)CrossRefGoogle Scholar
  28. 28.
    T. Haga, S. Suzuki, Casting of aluminum alloy ingots for thixoforming using a cooling slope. J. Mater. Process. Technol. 118, 169–172 (2001)CrossRefGoogle Scholar
  29. 29.
    A. Bolouri, M. Shahmiri, C.G. Kang, Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process. J. Alloys Compd. 509(2), 402–408 (2011)CrossRefGoogle Scholar
  30. 30.
    V. Abouei, H. Saghafian, S.G. Shabestari, M. Zarghami, Effect of Fe-rich intermetallics on the wear behavior of eutectic Al-Si piston alloy (LM13). Mater. Des. 31(7), 3518–3524 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Hekmat-Ardakan, X. Liu, F. Ajersch, X.G. Chen, Wear behaviour of hypereutectic Al-Si-Cu-Mg casting alloys with variable Mg contents. Wear 269(9–10), 684–692 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Sun, H. Ahlatci, Mechanical and wear behaviors of Al-12Si-XMg composites reinforced with in situ Mg2Si particles. Mater. Des. 32(5), 2983–2987 (2011)CrossRefGoogle Scholar
  33. 33.
    X. Wu, G. Zhang, F. Wu, Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al-Mg2Si metal matrix composite. Trans. Nonferrous Met. Soc. China 23(6), 1532–1542 (2013)CrossRefGoogle Scholar
  34. 34.
    N. Soltani, H.R. Jafari Nodooshan, A. Bahrami, M.I. Pech-Canul, W. Liu, G. Wu, Effect of hot extrusion on wear properties of Al-15wt.% Mg2Si in situ metal matrix composites. Mater. Des. 53, 774–781 (2014)CrossRefGoogle Scholar
  35. 35.
    C. Li, J. Hou, D. Zhao, Y. Wu, X. Liu, Thermodynamic evaluation of Al-Mg2Si with addition of Ni. Mater. Lett. 68, 255–257 (2012)CrossRefGoogle Scholar
  36. 36.
    C. Li, Y. Wu, H. Li, Y. Wu, X. Liu, Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys. Mater. Sci. Eng. A 528, 573–577 (2010)CrossRefGoogle Scholar
  37. 37.
    M. Tebib, F. Ajersch, A.M. Samuel, X.G. Chen, Solidification and microstructural evolution of hypereutectic Al-15Si-4Cu-Mg alloys with high magnesium contents. Metall. Mater. Trans. A 44(9), 4282–4295 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Jahanmir, N.P. Suh, Mechanics of subsurface void nucleation in delamination wear. Wear 44(1), 17–38 (1977)CrossRefGoogle Scholar
  39. 39.
    N.P. Suh, An overview of the delamination theory of wear. Wear 44(1), 1–16 (1977)CrossRefGoogle Scholar
  40. 40.
    M. Sameezadeh, M. Emamy, H. Farhangi, Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites. Mater. Des. 32(4), 2157–2164 (2011)CrossRefGoogle Scholar
  41. 41.
    Y. Birol, F. Birol, Sliding wear behaviour of thixoformed AlSiCuFe alloys. Wear 265(11–12), 1902–1908 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and ASM International 2018

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations