Advertisement

Pyrrolidine alkaloids and their promises in pharmacotherapy

  • Muhammad Torequl IslamEmail author
  • Mohammad Suleiman Mubarak
Review

Abstract

This review aimed at summarizing the literature pertaining to the biological activities of pyrrolidine alkaloids and their derivatives obtained from various sources. For this purpose, an up-to-date search was made in various databases such as PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and Google Scholar. Findings suggest that to date, a number of pyrrolidine alkaloids have been shown to possess several important biological activities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiparasitic and anthelmintic, anticancer, anti-hyperglycemic, organ protective, and neuropharmacological activities. Additionally, some alkaloids have been identified to exert toxic effects on the animal organs. Among these alkaloids, bgugaine and irniine are known to cause renal injuries, whereas nicotine and cocaine have been confirmed to cause neurotoxicity in experimental animals. Furthermore, pyrrolidine alkaloids can be some of the best sources of pharmacologically active lead compounds.

Keywords

Alkaloids Pyrrolidine Plant-derived Microorganisms Pharmacological effects 

Notes

Acknowledgements

I am owed to the Department for Management of Science and Technology Development & Faculty of Pharmacy, Ton Duc Thang University, Viet Nam for the overall supporting this research.

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Muhammad Torequl Islam has no conflict of interest. Mohammad Suleiman Mubarak has no conflict of interest.

References

  1. Adams GG, Imran S, Wang S, Mohammad A, Kok MS, Gray DA, Channell GA, Harding SE (2014) The hypoglycemic effect of pumpkin seeds, Trigonelline (TRG), Nicotinic acid (NA), and d-Chiro-inositol (DCI) in controlling glycemic levels in diabetes mellitus. Crit Rev Food Sci Nutr 54:1322–1329CrossRefGoogle Scholar
  2. Aderogba MA, Ndhlala AR, Rengasamy KR, Van Staden J (2013) Antimicrobial and selected in vitro enzyme inhibitory effects of leaf extracts, flavonols and indole alkaloids isolated from Croton menyharthii. Molecules 18:12633–12644CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahn J, Chae HS, Chin YW, Kim J (2017) Alkaloids from aerial parts of Houttuynia cordata and their anti-inflammatory activity. Bioorg Med Chem Lett 27:2807–2811CrossRefGoogle Scholar
  4. Ali Khan MS, Misbah Ahmed N, Arifuddin M, Rehman A, Ling MP (2018) Indole alkaloids and anti-nociceptive mechanisms of Tabernaemontana divaricata (L.) R. Br. flower methanolic extract. Food Chem Toxicol 118:953–962CrossRefGoogle Scholar
  5. Al-Massarani SM, El-Gamal AA, Al-Said MS, Abdel-Kader MS, Ashour AE, Kumar A, Abdel-Mageed WM, Al-Rehaily AJ, Ghabbour HA, Fun HK (2016) Studies on the red sea sponge Haliclona sp. for its chemical and cytotoxic properties. Pharmacogn Mag 12:114–119CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bach DH, Lee SK (2018) The potential impacts of tylophora alkaloids and their derivatives in modulating inflammation, viral infections, and cancer. Curr Med Chem.  https://doi.org/10.2174/0929867325666180726123339 CrossRefGoogle Scholar
  7. Bailey CJ, Day C (2018) Treatment of type 2 diabetes: future approaches. Br Med Bull 126:123–137CrossRefGoogle Scholar
  8. Benamar M, Melhaoui A, Zyad A, Bouabdallah I, Aziz M (2009) Anti-cancer effect of two alkaloids: 2R and 2S-bgugaine on mastocytoma P815 and carcinoma Hep. Nat Prod Res 23:659–664CrossRefGoogle Scholar
  9. Bhat C (2015) Synthetic studies of alkaloids containing pyrrolidine and piperidine structural motifs. ChemistryOpen 4:192–196CrossRefPubMedPubMedCentralGoogle Scholar
  10. Biswas NN, Acharzo AK, Anamika S, Khushi S, Bokshi B (2017) Screening of natural bioactive metabolites and investigation of antioxidant, antimicrobial, antihyperglycemic, neuropharmacological, and cytotoxicity potentials of Litsea polyantha Juss. Evid Based Complement Alternat Med 2017:3701349CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chang W, Chen L, Hatch GM (2015) Berberine as a therapy for type 2 diabetes and its complications: from mechanism of action to clinical studies. Biochem Cell Biol 93:479–486CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheenpracha S, Boapun P, Limtharakul Née Ritthiwigrom T, Laphookhieo S, Pyne SG (2017) Antimalarial and cytotoxic activities of pregnene-type steroidal alkaloids from Holarrhena pubescens roots. Nat Prod Res 24:1–7Google Scholar
  13. Christodoulou MI, Tchoumtchoua J, Skaltsounis AL, Scorilas A, Halabalaki M (2018) Natural alkaloids intervening the insulin pathway: new hopes for anti-diabetic agents? Curr Med Chem.  https://doi.org/10.2174/0929867325666180430152618 CrossRefGoogle Scholar
  14. Cirillo P, De Rosa S, Pacileo M, Gargiulo A, Leonardi A, Angri V, Formisano S, Chiariello M (2006) Nicotine induces tissue factor expression in cultured endothelial and smooth muscle cells. J Thromb Haemost 4:453–458CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cosnier D, Duchenne-Marullaz P, Rispat G, Streichenberger G (1977) Cardiovascular pharmacology of bepridil (1[3 isobutoxy 2 (benzylphenyl) amino] propyl pyrrolidine hydrochloride) a new potential anti-anginal compound. Arch Int Pharmacodyn Ther 225:133–151PubMedPubMedCentralGoogle Scholar
  16. D’Alonzo D, De Fenza M, Porto C, Iacono R, Huebecker M, Cobucci-Ponzano B, Priestman DA, Platt F, Parenti G, Moracci M, Palumbo G, Guaragna A (2017) N-Butyl-l-deoxynojirimycin (l-NBDNJ): synthesis of an allosteric enhancer of α-glucosidase activity for the treatment of Pompe disease. J Med Chem 60:9462–9469CrossRefPubMedPubMedCentralGoogle Scholar
  17. de Avila JM, Dalcol II, Pereira AO, Santos EW, Ferraz A, Santos MZ, Mostardeiro MA, Morel AF (2018) Antimicrobial evaluation of erythrinan alkaloids from Erythrina crista-galli L. Med Chem 14(8):784–790CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dehkordi O, Rose JE, Asadi S, Manaye KF, Millis RM, Jayam-Trouth A (2015) Neuroanatomical circuitry mediating the sensory impact of nicotine in the central nervous system. J Neurosci Res 93:230–243CrossRefPubMedPubMedCentralGoogle Scholar
  19. do Santos RC, de Souza AV, Andrade-Silva M, Vera Cruz KC, Leite Kassuya CA, Lima Cardoso CA, Vieira MDC, Nazari Formagio AS (2018) Antioxidant, anti-rheumatic and anti-inflammatory investigation of extract and dicentrinone from Duguetia furfuracea (A. St.-Hil.) Benth. & Hook. f. J Ethnopharmacol 211:9–16CrossRefPubMedPubMedCentralGoogle Scholar
  20. Domino EF, Hornbach E, Demana T (1993) The nicotine content of common vegetables. New Eng J Med 329:437CrossRefPubMedGoogle Scholar
  21. Elbein AD, Mitchell M, Sanford BA, Fellows LE, Evans SV (1984) The pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, inhibits glycoprotein processing. J Biol Chem 259:12409–12413PubMedGoogle Scholar
  22. Fan YJ, Chen HQ, Mei WL, Kong FD, Li FX, Chen PW, Cai CH, Huang MJ, Dai HF (2018) Nematicidal amide alkaloids from the seeds of Clausena lansium. Fitoterapia 128:20–25CrossRefPubMedGoogle Scholar
  23. Girgis AS, Panda SS, Farag IS, El-Shabiny AM, Moustafa AM, Ismail NS, Pillai GG, Panda CS, Hall CD, Katritzky AR (2015a) Synthesis, and QSAR analysis of anti-oncological active spiro-alkaloids. Org Biomol Chem 13:1741–1753CrossRefPubMedGoogle Scholar
  24. Girgis AS, Panda SS, Srour AM, Farag H, Ismail NS, Elgendy M, Abdel-Aziz AK, Katritzky AR (2015b) Rational design, synthesis and molecular modeling studies of novel anti-oncological alkaloids against melanoma. Org Biomol Chem 13:6619–6633CrossRefPubMedGoogle Scholar
  25. Girma B, Mulisa E, Tessema S, Amelo W (2018) Ethnomedicine claim directed in Silico  prediction of anticancer activity. Ethiop J Health Sci 28:83–92CrossRefPubMedPubMedCentralGoogle Scholar
  26. Green D (2011) Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. ISBN 978-0-87969-888-1Google Scholar
  27. Hati S, Tripathy S, Dutta PK, Agarwal R, Srinivasan R, Singh A, Singh S, Sen S (2016) Spiro[pyrrolidine-3, 3´-oxindole] as potent anti-breast cancer compounds: their design, synthesis, biological evaluation and cellular target identification. Sci Rep 6:32213CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hosseinzadeh Z, Ramazani A, Hosseinzadeh K, Razzaghi-Asl N, Gouranlou F (2017) An overview on chemistry and biological importance of pyrrolidinone. Curr Org Synth 14:1–13CrossRefGoogle Scholar
  29. Hu J, Shi X, Chen J, Mao X, Zhu L, Yu L, Shi J (2014) Alkaloids from Toddalia asiatica and their cytotoxic, antimicrobial and antifungal activities. Food Chem 148:437–444CrossRefPubMedGoogle Scholar
  30. Ibrahim SRM, Mohamed GA, Moharram AM, Youssef DTA (2015) Aegyptolidines A and B: new pyrrolidine alkaloids from the fungus Aspergillus aegyptiacus. Phytochem Lett 12:90–93CrossRefGoogle Scholar
  31. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82CrossRefGoogle Scholar
  32. Islam MT, Alencar MVOB, Mata AMOF, Paz MFCJ, Matos LA, Sousa JMC, Melo-Cavalcante AAC (2016a) Coffee: a health fuel-blot popular drinking. Int J Pharm Pharml Sci 8:1–7CrossRefGoogle Scholar
  33. Islam MT, Silva CB, Alencar MVOB, Paz MFCJ, Almeida FRC, Melo-Cavalcante AAC (2016b) Diterpenes: advances in neurobiological drug research. Phytother Res 30:915–928CrossRefGoogle Scholar
  34. Islam MT, Streck L, Paz MFCJ, Sousa JMC, Alencar MVOB, Mata AMOF, Carvalho RM, Jose Santos JVO, Silva-Junior AA, Ferreira PMP, Melo-Cavalcante AAC (2016c) Preparation of phytol-loaded nanoemulsion and screening for antioxidant capacity. Int Arch Med 9:1–15Google Scholar
  35. Islam MT, Streck L, Alencar MVOB, Silva SWC, Machado KC, Machado KC, Júnior ALG, Paz MFCJ, Mata AMOF, Sousa JMC, Junior JSC, Rolim HML, Silva-Junior AA, Melo-Cavalcante AAC (2017) Evaluation of toxic, cytotoxic and genotoxic effects of phytol and its nanoemulsion. Chemosphere 177:93–101CrossRefGoogle Scholar
  36. Ji X, Guo J, Liu Y, Lu A, Wang Z, Li Y, Yang S, Wang Q (2018) Marine-natural-product development: first discovery of nortopsentin alkaloids as novel antiviral, anti-phytopathogenic-fungus, and insecticidal agents. J Agric Food Chem 66:4062–4072CrossRefGoogle Scholar
  37. Jiang QW, Chen MW, Cheng KJ, Yu PZ, Wei X, Shi Z (2016) Therapeutic potential of steroidal alkaloids in cancer and other diseases. Med Res Rev 36:119–143CrossRefGoogle Scholar
  38. Johari SA, Mohtar M, Mohammad SA, Sahdan R, Shaameri Z, Hamzah AS, Mohammat MF (2015) In vitro inhibitory and cytotoxic activity of MFM 501, a novel codonopsinine derivative, against methicillin-resistant Staphylococcus aureus clinical isolates. Biomed Res Int 2015:823829CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kaminski RM, Núñez-Taltavull JF, Budziszewska B, Lasoń W, Gasior M, Zapata A, Shippenberg TS, Witkin JM (2011) Effects of cocaine-kindling on the expression of NMDA receptors and glutamate levels in mouse brain. Neurochem Res 36:146–152CrossRefGoogle Scholar
  40. Katavic PL, Venables DA, Rali T, Carroll AR (2007) Habbemines A and B, pyrrolidine alkaloids with human delta-opioid receptor binding affinity from the leaves of Elaeocarpus habbemensis. J Nat Prod 70:866–868CrossRefGoogle Scholar
  41. Kiss T, Borcsa B, Orvos P, Tálosi L, Hohmann J, Csupor D (2017) Diterpene lipo-alkaloids with selective activities on cardiac K+ channels. Planta Med 83:1321–1328CrossRefGoogle Scholar
  42. Lenoir M, Kiyatkin EA (2011) Critical role of peripheral actions of intravenous nicotine in mediating its central effects. Neuropsychopharmacology 36:2125–2138CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lenoir M, Tang JS, Woods AS, Kiyatkin EA (2013) Rapid sensitization of physiological, neuronal, and locomotor effects of nicotine: critical role of peripheral drug actions. J Neurosci 33:9937–9949CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li Q, Zhou XD, Kolosov VP, Perelman JM (2011) Nicotine reduces TNF-α expression through a α7 nAChR/MyD88/NF-ĸB pathway in HBE16 airway epithelial cells. Cell Physiol Biochem 27:605–612CrossRefGoogle Scholar
  45. Li SP, Wang YW, Qi SL, Zhang YP, Deng G, Ding WZ, Ma C, Lin QY, Guan HD, Liu W, Cheng XM, Wang CH (2018) Analogous β-carboline alkaloids harmaline and harmine ameliorate scopolamine-induced cognition dysfunction by attenuating acetylcholinesterase activity, oxidative stress, and inflammation in mice. Front Pharmacol 9:346CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu XC, Lai D, Liu QZ, Zhou L, Liu Q, Liu ZL (2016) Bioactivities of a new pyrrolidine alkaloid from the root barks of Orixa japonica. Molecules.  https://doi.org/10.3390/molecules21121665 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lohmann JS, Wagner S, von Nussbaum M, Pulte A, Steglich W, Spiteller P (2018) Mycenaflavin A, B, C, and D: pyrroloquinoline alkaloids from the fruiting bodies of the mushroom Mycena haematopus. Chemistry 24:8609–8614CrossRefGoogle Scholar
  48. Lu C, Dong L, Lv J, Wang Y, Fan B, Wang F, Liu X (2018) 20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice. Chem-Biol Interact 279:64–72CrossRefGoogle Scholar
  49. Mai HN, Chung YH, Shin EJ, Kim DJ, Jeong JH, Nguyen TT, Nam Y, Lee YJ, Nah SY, Yu DY, Jang CG, Ho YS, Lei XG, Kim HC (2016) Genetic depletion of glutathione peroxidase-1 potentiates nephrotoxicity induced by multiple doses of cocaine via activation of angiotensin II AT1 receptor. Free Radic Res 50:467–483CrossRefGoogle Scholar
  50. Majik MS, Naik D, Bhat C, Tilve S, Tilvi S, D’Souza L (2013) Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa. Bioorg Med Chem Lett 23:2353–2356CrossRefPubMedPubMedCentralGoogle Scholar
  51. Malczewska-Jaskóła K, Jasiewicz B, Mrówczyńska L (2016) Nicotine alkaloids as antioxidant and potential protective agents against in vitro oxidative haemolysis. Chem-Biol Interact 243:62–71CrossRefPubMedPubMedCentralGoogle Scholar
  52. Meiyazhagan G, Raju R, Winfred SB, Mannivanan B, Bhoopalan H, Shankar V, Sekar S, Venkatachalam DP, Pitani R, Nagendrababu V, Thaiman M, Devivanayagam K, Jayaraman J, Ragavachary R, Venkatraman G (2015) Bioactivity studies of β-lactam derived polycyclic fused pyrroli-dine/pyrrolizidine derivatives in dentistry: in vitro, in vivo and in silico studies. PLoS ONE 10:e0131433CrossRefPubMedPubMedCentralGoogle Scholar
  53. Metcalf RL (2007) Insect control, Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley, Hoboken, p 9Google Scholar
  54. Mizushina Y, Xu X, Asano N, Kasai N, Kato A, Takemura M, Asahara H, Linn S, Sugawara F, Yoshida H, Sakaguchi K (2003) The inhibitory action of pyrrolidine alkaloid, 1,4-dideoxy-1,4-imino-d-ribitol, on eukaryotic DNA polymerases. Biochem Biophys Res Commun 304:78–85CrossRefPubMedPubMedCentralGoogle Scholar
  55. Moldoveanu SC, Scott WA, Lawson DM (2016) Nicotine analysis in several non-tobacco plant materials. Beiträge zur Tabakforschung Int/Contribut Tobacco Res.  https://doi.org/10.1515/cttr-2016-0008 CrossRefGoogle Scholar
  56. Molyneux RJ, Pan YT, Tropea JE, Elbein AD, Lawyer CH, Hughes DJ, Fleet GW (1993) 2-Hydroxymethyl-3,4-dihydroxy-6-methyl-pyrrolidine (6-deoxy-DMDP), an alkaloid beta-mannosidase inhibitor from seeds of Angylocalyx pynaertii. J Nat Prod 56:1356–1364CrossRefPubMedPubMedCentralGoogle Scholar
  57. Morais GP, Alencar MVOB, Islam MT, Araújo LS, Gomes DCV, Carvalho RM, Correia D, Paz MFCJ, Ferreira PMP, Melo-Cavalcante AAC, Picada JN (2016) Toxicogenetic profile of rats treated with aqueous extract from Morinda citrifolia fruits. J Med Plants Res 10:18–28CrossRefGoogle Scholar
  58. Morioka N, Tokuhara M, Nakamura Y, Idenoshita Y, Harano S, Zhang FF, Hisaoka-Nakashima K, Nakata Y (2014) Primary cultures of rat cortical microglia treated with nicotine increases in the expression of excitatory amino acid transporter 1 (GLAST) via the activation of the α7 nicotinic acetylcholine receptor. Neuroscience 258:374–384CrossRefPubMedPubMedCentralGoogle Scholar
  59. Morris BD, Prinsep MR (1999) Amathaspiramides A–F, novel brominated alkaloids from the marine bryozoan Amathia wilsoni. J Nat Prod 62:688–693CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nakao S, Ogata Y, Sugiya H (2009) Nicotine stimulates the expression of cyclooxygenase-2 mRNA via NFκB activation in human gingival fibroblasts. Arch Oral Biol 54:251–257CrossRefPubMedGoogle Scholar
  61. Owolabi OO, James DB, Sani I, Andongma BT, Fasanya OO, Kure B (2018) Phytochemical analysis, antioxidant and anti-inflammatory potential of Feretia apodanthera root bark extracts. BMC Complement Altern Med 18:12CrossRefPubMedPubMedCentralGoogle Scholar
  62. Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A (2015) Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin Nutr 34:1101–1108CrossRefPubMedGoogle Scholar
  63. Poolperm S, Jiraungkoorskul W (2017) An update review on the anthelmintic activity of bitter gourd, Momordica charantia. Pharmacogn Rev 11:31–34CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rakba N, Melhaoui A, Loyer P, Guy Delcros J, Morel I, Lescoat G (1999) Bgugaine, a pyrrolidine alkaloid from Arisarum vulgare, is a strong hepatotoxin in rat and human liver cell cultures. Toxicol Lett 104:239–248CrossRefPubMedGoogle Scholar
  65. Rakba N, Melhaoui A, Rissel M, Morel I, Loyer P, Lescoat G (2000) Irniine, a pyrrolidine alkaloid, isolated from Arisarum vulgare can induce apoptosis and/or necrosis in rat hepatocyte cultures. Toxicon 38:1389–1402CrossRefPubMedGoogle Scholar
  66. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation and cancer: how are they linked? Free Radical Bio Med 49:1603–1616CrossRefGoogle Scholar
  67. Riss TL, Moravec RA, Moravec (2004) Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays. Assay Drug Dev Technol 2:51–62CrossRefPubMedGoogle Scholar
  68. Ruiz A, Zapata M, Sabando C, Bustamante L, von Baer D, Vergara C, Mardones C (2014) Flavonols, alkaloids, and antioxidant capacity of edible wild berberis species from patagonia. J Agric Food Chem 62:12407–12417CrossRefPubMedGoogle Scholar
  69. Shi ZF, Lei C, Yu BW, Wang HY, Hou AJ (2016) New alkaloids and α-glucosidase inhibitory flavonoids from Ficus hispida. Chem Biodivers 13:445–450CrossRefPubMedGoogle Scholar
  70. Shibano M, Tsukamoto D, Masuda A, Tanaka Y, Kusano G (2001) Two new pyrrolidine alkaloids, radicamines A and B, as inhibitors of alpha-glucosidase from Lobelia chinensis Lour. Chem Pharm Bull (Tokyo) 49:1362–1365CrossRefGoogle Scholar
  71. Shimokawa J, Chiyoda K, Umihara H, Fukuyama T (2016) Antiproliferative activity of amathaspiramide alkaloids and analogs. Chem Pharm Bull (Tokyo) 64:1239–1241CrossRefGoogle Scholar
  72. Siegmund B, Leitner E, Pfannhauser W (1999) Determination of the nicotine content of various edible nightshades (Solanaceae) and their products and estimation of the associated dietary nicotine intake. J Agric Food Chem 47:3113–3120CrossRefGoogle Scholar
  73. Tang JS, Kiyatkin EA (2011) Fluctuations in central and peripheral temperatures induced by intravenous nicotine: central and peripheral contributions. Brain Res 1383:141–153CrossRefPubMedPubMedCentralGoogle Scholar
  74. Truong M, Monahan LG, Carter DA, Charles IG (2018) Repurposing drugs to fast-track therapeutic agents for the treatment of cryptococcosis. Peer J 6:e4761CrossRefGoogle Scholar
  75. Tsou EL, Chen SY, Yang MH, Wang SC, Cheng TR, Cheng WC (2008) Synthesis and biological evaluation of a 2-aryl polyhydroxylated pyrrolidine alkaloid-based library. Bioorg Med Chem 16:10198–10204CrossRefGoogle Scholar
  76. Tsuda M, Sasaki M, Mugishima T, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi J (2005) Scalusamides A–C, new pyrrolidine alkaloids from the marine-derived fungus Penicillium citrinum. J Nat Prod 68:273–276CrossRefGoogle Scholar
  77. Van Crombruggen K, Van Nassauw L, Derycke L, Timmermans JP, Holtappels G, Hall D, Bachert C (2011) Capsaicin-induced vasodilatation in human nasal vasculature is mediated by modulation of cyclooxygenase-2 activity and abrogated by sulprostone. Naunyn Schmiedebergs Arch Pharmacol 383:613–626CrossRefGoogle Scholar
  78. Wang Y, Zhang F, Yang W, Xue S (2012) Nicotine induces pro-inflammatory response in aortic vascular smooth muscle cells through a NFκB/osteopontin amplification loop-dependent pathway. Inflammation 35:342–349CrossRefGoogle Scholar
  79. Wang C, Gu W, Zhang Y, Ji Y, Wen Y, Xu X (2017) Nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro. Exp Toxicol Pathol 69:402–407CrossRefGoogle Scholar
  80. Watson AA, Nash RJ, Wormald MR, Harvey DJ, Dealler S, Lees E, Asano N, Kizu H, Kato A, Griffiths RC, Cairns AJ, Fleet GWJ (1997) Glycosidase-inhibiting pyrrolidine alkaloids from Hyacinthoides non-scripta. Phytochemistry 46:255–259CrossRefGoogle Scholar
  81. Wu L, Zhou Y, Zhou Z, Liu Y, Bai Y, Xing X, Wang X (2014) Nicotine induces the production of IL-1β and IL-8 via the α7 nAChR/NF-κB pathway in human periodontal ligament cells: an in vitro study. Cell Physiol Biochem 34:423–431CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yildiz D (2004) Nicotine, its metabolism and an overview of its biological effects. Toxicon 43:619–632CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yoshino K, Higashi N, Koga K (2006) Antioxidant and antiinflammatory activities of oregano extract. J Health Sci 52:169–173CrossRefGoogle Scholar
  84. Zhang Q, Cai L, Zhong G, Luo W (2010) Simultaneous determination of jatrorrhizine, palmatine, berberine, and obacunone in Phellodendri Amurensis Cortex by RP-HPLC. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J Chin Mater Med 35:2061–2064Google Scholar
  85. Zhang J, Chen L, Sun J (2018) Oxoisoaporphine alkaloids: prospective anti-Alzheimer’s disease, anticancer, and antidepressant agents. ChemMedChem 13(13):1262–1274CrossRefGoogle Scholar
  86. Zhu L, Han J, Yuan R, Xue L, Pang W (2018) Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res 51:9CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Institute of Korean Medicine, Kyung Hee University 2020

Authors and Affiliations

  1. 1.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of PharmacyTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Chemistry, Faculty of ScienceThe University of JordanAmmanJordan

Personalised recommendations