Annals of Forest Science

, 76:77 | Cite as

Geographic variation of tree height of three pine species (Pinus nigra Arn., P. pinaster Aiton, and P. pinea L.) gathered from common gardens in Europe and North-Africa

  • Natalia Vizcaíno-PalomarEmail author
  • Marta Benito Garzón
  • Ricardo Alia
  • Guia Giovannelli
  • Gerhard Huber
  • Sven Mutke
  • Patrick Pastuszka
  • Annie Raffin
  • Hassan Sbay
  • Muhidin Šeho
  • Denis Vauthier
  • Bruno Fady
Data Paper
Part of the following topical collections:
  1. Mediterranean Pines


Key message

This datapaper collects individual georeferenced tree height data from Pinus nigra Arn., P. pinaster Aiton, and P. pinea L. planted in common gardens in France, Germany, Morocco, and Spain. The data can be used to assess genetic variation and phenotypic plasticity with further applications in biogeography and forest management. The three datasets are available at (Vizcaíno-Palomar et al. 2018a), (Vizcaíno-Palomar et al. 2018b), and (Vizcaíno-Palomar et al. 2018c), and the associated metadata are available at , and for P. nigra, P. pinaster and P. pinea, respectively.


Adaptation Assisted migration Genetic variation Niche breadth Phenotypic plasticity Tree height 



France: We acknowledge the invaluable help of F. Rei (INRA UEFM, Avignon, France), N. Cheval, C. Magnin, L. Moras, N. Morrisson, L. Puzos, and L. Severin (INRA UEFP, Bordeaux, France), F. Bonne, T. Paul, and V. Rousselet (INRA UEFL, Nancy, France) for data collection in French common gardens. These pine species are some of the many forest tree species managed at INRA in the GEN4X network of common gardens (see Likewise, we acknowledge the invaluable help of the Unité Expérimentale Forêt Pierroton, UEFP, which produced the material and planted, managed, and measured the trials of P. pinaster located in France.

Germany: We acknowledge the help of Andreas Zaiser and Christoph Sommer (Bavarian Office for Seeding and Planting) for data collection in Germany.

Morocco: We gratefully acknowledge the forest tree genetic improvement team for their assistance and dedicated involvement in every step throughout the P. pinaster field trials process.

Spain: We acknowledge the GENFORED team; they took field measurements, keep updated and cleaned the databases, and make possible to keep alive a great network of common gardens of different tree species. Similarly, to Javier Gordo (Junta de Castilla y León), Aránzazu Prada (Generalitat Valenciana), and Salustiano Iglesias (MAPAMA) for data collection in P. pinea common gardens.

Contribution of the co-authors

NVP compiled, cleaned, and checked the data from the three pine species and wrote the manuscript. MBG coordinated data acquisition from the three pine species and wrote the manuscript. RA coordinated the study designs and collected the data of P. nigra and P. pinaster in Spain. GG collected and compiled the data of P. nigra in France. GH and MS coordinated the study design of P. nigra in Germany and collected the data. SM collaborated in the study design of P. pinea in Spain, collected and checked the data. PP coordinated the study design of P. pinaster in France and collected the data. AR is in charge of data gathering, checking, and archiving the common gardens of P. pinaster in France. HS coordinated the study design of P. pinaster in Morocco and collected the data. DV collected data of P. pinea common gardens and took care of metadata and data curation for this species. BF coordinated the study design of P. pinea in France and collected the data. Likewise, BF coordinated data acquisition from the three pine species and wrote the manuscript. All authors contributed to, and approved, the final version of the manuscript.


We acknowledge the funding called Investments for the future: Programme IdEx Bordeaux (France), reference ANR-10-IDEX-03-02, thanks to that MBG coordinated this datapaper and NVP worked on it. Identically, we acknowledge funding from the French Ministry of Agriculture in charge of forests and its regional bureau in Montpellier, the ANR project AMTools (ANR-11-AGRO-0005), and the Aix-Marseille Université (as part of GG’s PhD thesis) for the French data. In the same way, we acknowledge the support from the Spanish Ministry of Agriculture, Fishery and Environment (MAPAMA) and the regional governments of Junta de Castilla y León and Generalitat Valenciana through agreements with Universidad Politécnica de Madrid (UPM). Likewise, we acknowledge funding from the Bavarian State Ministry of Food, Agriculture and Forestry (StMELF) for the German data. The creation of the network of P. pinea common gardens was made possible by the support given from FAO Silva Mediterranea ( INRA funded the creation and maintenance of the French experimental network of common gardens (GEN4X), as well as the development and implementation of the information system archiving its data, GnpIS ( P. pinea data collected in the future will be archived on GnpIS at: INIA funded the Spanish network by successive projects OT03-002, AT2010-007, AT2013-004, and RTA2013-00011. Finally, this publication is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programmer under grant agreement no. 676876 (GenTree).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alberto FJ, Aitken SN, Alía R et al (2013) Potential for evolutionary responses to climate change - evidence from tree populations. Glob Chang Biol 19:1645–1661. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alía R, Gil L, Pardos JA (1995) Performance of 43 Pinus pinaster Ait. provenances on 5 locations in Central Spain. Silvae Genet 44:75–81Google Scholar
  3. Benito Garzón M, Fernández-Manjarrés J (2015) Testing scenarios for assisted migration of forest trees in Europe. New For 46:979–994CrossRefGoogle Scholar
  4. Benito Garzón M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob Ecol Biogeogr 20:766–778. CrossRefGoogle Scholar
  5. Benito Garzón M, Robson TM, Hampe A (2019) ΔTraitSDM: Species distribution models that account for local adaptation and phenotypic plasticity. New Phytol 222:1757–1765. CrossRefPubMedGoogle Scholar
  6. Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192CrossRefGoogle Scholar
  7. Chevin LM, Collins S, Lefèvre F (2013) Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct Ecol 27:967–979. CrossRefGoogle Scholar
  8. Climent J, Prada MA, Calama R, Chambel MR, de Ron DS, Alía R (2008) To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am J Bot 95:833–842. CrossRefPubMedGoogle Scholar
  9. Fady B (2012) Biogeography of neutral genes and recent evolutionary history of pines in the Mediterranean Basin. Ann For Sci 69:421–428. CrossRefGoogle Scholar
  10. Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208. CrossRefPubMedGoogle Scholar
  11. Harfouche A, Baradat P, Durel C, Pommery J (1995) Variabilité intraspécifique chez le pin maritime (Pinus pinasterAit.) dans le sud-est de la France. I. Variabilité des populations autochtones et des populations de l’ensemble de l’aire de l’espèce. Ann For Sci 52:307–328. CrossRefGoogle Scholar
  12. Huber G, Šeho M (2016) Die Schwarzkiefer – eine Alternative für warm-trockene Regionen. LWF aktuell 110:17–20Google Scholar
  13. Mutke S, Gordo J, Chambel MR, Prada MA, Álvarez D, Iglesias S, Gil L (2010) Phenotypic plasticity is stronger than adaptative differentiation among Mediterranean stone pine provenances. For Syst 19:354. CrossRefGoogle Scholar
  14. Mutke S, Gordo J, Khouja M, Fady B (2013) Low genetic and high environmental diversity at adaptive traits in Pinus pinea from provenance tests in France and Spain. Options Méditerranéennes A 105:73–79Google Scholar
  15. O’Neill GA, Nigh G (2011) Linking population genetics and tree height growth models to predict impacts of climate change on forest production. Glob Chang Biol 17:3208–3217. CrossRefGoogle Scholar
  16. Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Chang Biol 8:912–929. CrossRefGoogle Scholar
  17. Robson TM, Benito Garzón M, Beech COSTe52 database consortium (2018) Phenotypic trait variation measured on European genetic trials of Fagus sylvatica L. Sci Data 5:180149. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ruiz-Benito P, Gómez-Aparicio L, Zavala MA (2012) Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Divers Distrib 18:1092–1106CrossRefGoogle Scholar
  19. Šeho M, Kohnle U, Albrecht A, Lenk E (2010) Wachstumsanalysen von vier Schwarzkiefer-Provenienzen auf trockenen Standorten in Baden-Württemberg. Allg Forst- und Jagdzeitung 181:104–116Google Scholar
  20. Steinbach D, Alaux M, Amselem J, Choisne N, Durand S, Flores R, Keliet AO, Kimmel E, Lapalu N, Luyten I, Michotey C, Mohellibi N, Pommier C, Reboux S, Valdenaire D, Verdelet D, Quesneville H (2013) GnpIS: an information system to integrate genetic and genomic data from plants and fungi. Database (Oxford) 2013:bat058. CrossRefGoogle Scholar
  21. Tapias R, Pardos JA, Gil L, Climent J (2004) Life histories of Mediterranean pines. Plant Ecol 171:53–68CrossRefGoogle Scholar
  22. Vizcaíno-Palomar N, Ibáñez I, González-Martínez SC, Zavala MA, Alía R (2016) Adaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients. Ecol Evol 6:7561–7573. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Vizcaíno-Palomar N, Benito Garzón M, Alía R, et al (2018a) Geographic variation of tree height of Pinus nigra Arn. gathered from common gardens in Europe. V3. ZENODO. [Dataset].
  24. Vizcaíno-Palomar N, Benito Garzón M, Alía R, et al (2018b) Geographic variation of tree height of Pinus pinaster Aiton gathered from common gardens in Europe and North-Africa V3. ZENODO. [Dataset].
  25. Vizcaíno-Palomar N, Benito Garzón M, Mutke S, et al (2018c) Geographic variation of tree height of Pinus pinea L. gathered from common gardens in Europe. V3. ZENODO. [Dataset].

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Natalia Vizcaíno-Palomar
    • 1
    Email author
  • Marta Benito Garzón
    • 1
  • Ricardo Alia
    • 2
  • Guia Giovannelli
    • 3
  • Gerhard Huber
    • 4
  • Sven Mutke
    • 2
  • Patrick Pastuszka
    • 5
  • Annie Raffin
    • 5
  • Hassan Sbay
    • 6
  • Muhidin Šeho
    • 7
  • Denis Vauthier
    • 8
  • Bruno Fady
    • 3
  1. 1.BIOGECO, INRAUniv. BordeauxPessacFrance
  2. 2.INIAForest Research Centre & iuFOR UVa-INIAMadridSpain
  3. 3.INRA Unité de recherches Ecologie des Forêts MéditerranéennesUR629 (URFM)AvignonFrance
  4. 4.Bayerisches Staatsministerium für ErnährungLandwirtschaft und Forsten (StMELF)MünchenGermany
  5. 5.UEFP, INRACestasFrance
  6. 6.Centre de Recherche ForestièreRabat AgdalMorocco
  7. 7.Bayerisches Amt für forstliche Saat-und PflanzenzuchtTeisendorfGermany
  8. 8.INRA Unité expérimentale Entomologie et Forêt Méditerranéenne, UR348 (UEFM)AvignonFrance

Personalised recommendations