Evidence of climate effects on the height-diameter relationships of tree species

  • Mathieu FortinEmail author
  • Rosalinde Van Couwenberghe
  • Vincent Perez
  • Christian Piedallu
Research Paper
Part of the following topical collections:
  1. Mensuration and modelling for forestry in a changing environment


Key message

The mean temperature from March to September affects the height-diameter relationship of many tree species in France. For most of these species, the temperature effect is nonlinear, which makes the identification of an optimal temperature possible. Increases in mean temperature could impact the volume supply of commercial species by the end of the twenty-first century.


Height-diameter (HD) relationships are central in forestry since they are essential to estimate tree volume and biomass. Since the late 1960s, efforts have been made to generalize models of HD relationships through the inclusion of plot- and tree-level explanatory variables. In some recent studies, climate variables such as mean annual temperature and precipitation have been found to have a significant effect on HD allometry. However, in these studies, the effects were all considered to be linear or almost linear, which supposes that there is no optimal temperature and no optimal precipitation.


In this study, we tested the hypothesis that an optimum effect of temperature and precipitation exists on tree heights.


We fitted generalized models of HD relationships to 44 tree species distributed across France. To make sure that the climate variables would not hide some differences in terms of the local environment, the models included explanatory variables accounting for competition, tree social status and other plot-level factors such as slope inclination and the occurrence of harvesting in the last five years.


It turned out that the temperature effect was significant for 33 out of 44 species and an optimum was found in 26 cases. The precipitation effect was linear and was found to be significant for only seven species. Although the two climate variables did not contribute as much as the competition and the social status indices to the model fit, they were still important contributors. Under the representative concentration pathway (RCP) 2.6 and the assumptions of constant form factors and forest conditions in terms of competition and social statuses, it is expected that approximately two thirds of the species with climate-sensitive HD relationships will generally be shorter. This would induce a decrease in volume ranging from 1 to 5% for most of these species.


Forest practitioners should be aware that the volume supply of some commercial species could decrease by the end of the twenty-first century. However, these losses could be partly compensated for by changes in the form factors and the species distributions.


Generalized height-diameter relationship Mean temperature Mean precipitation Linear mixed-effects model Climate change 



The authors wish to thank the Institut national de l’information géographique et forestière (IGN) that provided the French NFI data. Thanks to the two anonymous reviewers and the Associate Editors for their constructive comments on a preliminary version of this paper.

Compliance with Ethical Standards

Conflict of Interest


Supplementary material

13595_2018_784_MOESM1_ESM.pdf (328 kb)
(PDF 328 KB)


  1. Adamec Z, Drápela K (2016) A comparaison of parametric and nonparametric method for the modeling of height-diameter relationship. iForest 10:1–8CrossRefGoogle Scholar
  2. Anonymous (2000) Les indicateurs de gestion durable des forêts françaises. Technical report, French Ministry of Agriculture and Fisheries and French National Forest Inventory. Available online at.
  3. Auger I (2016) Une nouvelle relation hauteur-diamètre tenant compte de l’influence de la station et du climat pour 27 essences commerciales du Québec. Technical report, Gouvernement du Québec, Ministère des Forêts, de la Faune et des Parcs, Direction de la recherche forestière, Note de recherche forestiè,re no 146Google Scholar
  4. Bégin J, Raulier F (1995) Comparaison de différentes approches, modèles et tailles d’échantillons pour l’établissement de relations hauteur-diamètre locales. Can J Forest Res 25:1303–1312CrossRefGoogle Scholar
  5. Bonnesoeur V, Constant T, Moulia B, Fournier M (2016) Forest trees filter chronic wind-signals to acclimate to high winds. N Phytol 210:850–860CrossRefGoogle Scholar
  6. Bontemps J -D, Hervé J -C, Dhôte J -F (2009) Long-term changes in forest productivity: a consistent assessment in even-aged stands. For Sci 55:549–564Google Scholar
  7. Burnham K P, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  8. Calama R, Montero G (2004) Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Can J Forest Res 34:150–163CrossRefGoogle Scholar
  9. Castedo Dorado F, Diéguez Aranda U, Barrio Anta M, Sánchez Rodríguez M, von Gadow K (2006) A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain. For Ecol Manage 229:202–213CrossRefGoogle Scholar
  10. Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan M S, Delitti W B C, Duque A, Eid T, Fearnside P M, Goodman R C, Henry M, Martínez-Yrízar A, Mugasha W A, Muller-Landau H C, Mencuccini M, Nelson B W, Ngomanda A, Nogueira E M, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan C M, Saldarriaga J G, Vieilledent G (2015) Improved allometric models to estimate aboveground biomass of tropical trees. Glob Chang Biol 20:3177–3190CrossRefGoogle Scholar
  11. Crecente Campo F, Corral Rivas J J, Vargas Larreta B, Wehenkel C (2014) Can random components explain differences in the height-diameter relationship in mixed uneven-aged stands? Ann For Sci 71:51–70CrossRefGoogle Scholar
  12. Curtis R O (1967) Height-diameter and height-diameter-age equations for second-growth Douglas-fir. For Sci 13:365–375Google Scholar
  13. Draper N R, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  14. Duan N (1983) Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc 78:605–610CrossRefGoogle Scholar
  15. Ericsson T, Rytter L, Vapaavuori E (1996) Physiology of carbon allocation in trees. Biomass Bioenergy 11(2/3):115–127CrossRefGoogle Scholar
  16. Feldpausch T R, Banin L, Phillips O L, Baker T R, Lewis S L, Quesada C A, Affum-Baffoe K, Arets E J M M, Berry N J, Bird M, Brondizio ES, de Camargo P, Chave J, Djagbletey G, Domingues TF, Drescher M, Fearnside PM, Franca MB, Fyllas NM, Lopez-Gonzalez G, Hladik A, Higuchi N, Hunter MO, Iida Y, Salim KA, Kassim AR, Keller M, Kemp J, King DA, Lovett JC, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Metcalfe DJ, Mitchard ETA, Moran EF, Nelson BW, Nilus R, Nogueira EM, Palace M, Patiño S, Peh KS-H, Raventos MT, Reitsma JM, Saiz G, Schrodt F, Sonké B, Taedoumg HE, Tan S, White L, Wöll H, Lloyd J (2011) Height-diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106CrossRefGoogle Scholar
  17. Forrester D I, Benneter A, Bouriaud O, Bauhus J (2017) Diversity and competition influence tree allometric relationships – developing functions for mixed-species forests. J Ecol 105:761–774CrossRefGoogle Scholar
  18. Fortin M, Bédard S, DeBlois J, Meunier S (2008) Accounting for error correlations in diameter increment modelling: a case study applied to northern hardwood stands in Quebec. Canada Can J Forest Res 38:2274–2286CrossRefGoogle Scholar
  19. Fortin M, Bernier S, Saucier J -P, Labbé F (2009) Une relation hauteur-diamètre tenant compte de l’influence de la station et du climat pour 20 espèces commerciales du Québec Technical report, Gouvernement du Québec, Ministère des Ressources naturelles et de la Faune, Direction de la recherche forestière, Mé,moire de recherche forestière no 153Google Scholar
  20. Garber S M, Temesgen H, Monleon V J, Hann D W (2009) Effects of height imputation strategies on stand volume estimation. Can J Forest Res 39:681–690CrossRefGoogle Scholar
  21. Gregoire T G (1987) Generalized error structure for forest yield models. For Sci 33:423–444Google Scholar
  22. Gregoire T G, Valentine HT (2008) Sampling strategies for natural resources and the environment. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  23. Hall D B, Bailey R L (2001) Modeling and prediction of forest growth variables based on multilevel nonlinear mixed models. For Sci 47(3):311–321Google Scholar
  24. Hanewinkel M, Kuhn T, Bugmann H, Lanz A, Brang P (2014) Vulnerability of uneven-aged forests to storm damage. Forestry 87:525–534CrossRefGoogle Scholar
  25. Hof A R, Dymond C C, Mladenoff D J (2017) Climate change mitigation through adaptation: the effectiveness of forest diversification by novel tree planting regime. Ecosphere 8:e01981CrossRefGoogle Scholar
  26. Hulshof C M, Swenson N G, Weiser M D (2015) Tree height-diameter allometry across the United States. Ecology and Evolution 5:1193–1204CrossRefGoogle Scholar
  27. IGN (2016) Résultats d’inventaire forestier Méthodologie Pour bien comprendre les résultats publiés 2011-2015. Technical report, Institut National de l’Information Géographique et Forestière (IGN)Google Scholar
  28. IGN (2017) Le mémento inventaire forestier. Edition 2017. Technical report, Institut National de l’Information Géographique et Forestière (IGN)Google Scholar
  29. IPCC (2013a) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the international panel on climate change, chapter annex I: Atlas of global and regional climate projections. Cambridge University Press, CambridgeGoogle Scholar
  30. IPCC (2013b) Climate change 2013: the physical science basis contribution of working group i to the fifth assessment report of the international panel on climate change, chapter annex I: Atlas of global and regional climate projections supplementary material RCP26. Cambridge University Press, CambridgeGoogle Scholar
  31. Jack S B, Long J N (1996) Linkage between silviculture and ecology: an analysis of density management diagrams. For Ecol Manage 86:205–220CrossRefGoogle Scholar
  32. Joly D, Brossard T, Cardot H, Cavailhes J, Hilal M (2010) Wavresky Les types de climats en France une construction spatiale. European Journal of Geography, Cybergeo. Google Scholar
  33. Kearsley E, Moonen P C J, Hufkens K, Doetterl S, Lisingo J, Bosela F B, Boeckx P, Beeckman H, Verbeeck H (2017) Model performance of tree height-diameter relationships in the central Congo Basin. Annals of Forest Science.
  34. Klaus M, Holsten A, Hostert P, Kropp JP (2011) Integrated methodology to assess windthrow impacts on forest stands under climate change. For Ecol Manage 261:1799–1810CrossRefGoogle Scholar
  35. Kroon J, Andersson B, Mullin T J (2008) Genetic variation in the diameter-height relationship in Scots pine (Pinus sylvestris). Can J Forest Res 38:1493–1503CrossRefGoogle Scholar
  36. Kunstler G, Curt T, Bouchaud M, Lepart J (2005) Growth, mortality, and morphological response of European beech and downy oak along a light gradient in sub-Mediterranean forest. Can J Forest Res 35:1657–1668CrossRefGoogle Scholar
  37. Lappi J, Bailey R L (1988) A height prediction model with random stand and tree parameters: an alternative to traditional site index methods. For Sci 34:907–927Google Scholar
  38. Larson BC (1992) The ecology and silviculture of mixed-species forests, chapter pathways of development in mixed-species stands, pages 3–10. Kluwer Academic, NetherlandsGoogle Scholar
  39. Lin Y -S, Medlyn B E, Ellsworth D S (2012) Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol 32:219–231CrossRefGoogle Scholar
  40. Lines E R, Zavala M A, Purves D W, Coomes D A (2012) Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 21:1017–1028CrossRefGoogle Scholar
  41. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute Inc, CaryGoogle Scholar
  42. López Sánchez C A, Gorgoso Varela J, Castedo Dorado F, Rojo Alboreca A, Rodríguez Soalleiro R, Álvarez González J G, Sánchez Rodríguez F (2003) A height-diameter model for Pinus radiada D Don in Galicia (Northwest Spain). Ann For Sci 60:237–245CrossRefGoogle Scholar
  43. Lu J, Zhang L (2013) Evaluation of structure specification in linear models for modeling the spatial effects in tree height-diameter relationships. Ann For Res 56:137–148Google Scholar
  44. McCullagh P, Nelder J A (1989) Generalized linear models monographs of statistics and applied probability 37, 2nd edn. Chapman & Hall, New YorkGoogle Scholar
  45. Mehtätalo L, de Miguel S, Gregoire T G (2015) Modeling height-diameter curves for prediction. Can J Forest Res 45:826– 837CrossRefGoogle Scholar
  46. Meng S X, Huang S, Lieffers V J, Nunifu T, Yang Y (2008) Wind speed and crown class influence the height-diameter relationship of lodgepole pine: nonlinear mixed effects modeling. For Ecol Manage 256:570–577CrossRefGoogle Scholar
  47. Oliver C D, Larson BC (1996) Forest stand dynamics updated edition. Wiley, New YorkGoogle Scholar
  48. Perron J -Y, Fortin M, Blais G, Blais L, Carpentier J -P, Cloutier J, Del Degan B, Demers D, Gagnon R, Létourneau J -P, Morin P, Richard Y, Ung C -H (2009) Manuel de Foresterie, 2e Edition, chapter Dendrométrie et inventaire forestier. Multimondes, Montréal, pp 567–629Google Scholar
  49. Piedallu C, Gégout J -C, Perez V, Lebourgeois F (2013) Soil water balance performs better than climatic water variable in tree species distribution modelling. Glob Ecol Biogeogr 22:470–482CrossRefGoogle Scholar
  50. Pinheiro J C, Bates D M (2000) Mixed-effects models in S and S-PLUS. Springer, BerlinCrossRefGoogle Scholar
  51. Pretzsch H (2009) Forest dynamics, Growth an yield. Springer, BerlinCrossRefGoogle Scholar
  52. Rameau J-C, Mansion D, Dumé G, Timbal J, Lecointe A, Dupont P, Keller R (1989) Flore Forestière Française Guide écologique illustré. Volume 1. Plaines et collines. Institut pour le Développement ForestierGoogle Scholar
  53. Régnière J, Saint-Amant R, Béchard A (2014) BioSIM 10 – User’s manual technical report natural resources Canada. Laurentian Forestry Centre, Canadian Forest ServiceGoogle Scholar
  54. Sanderson B M, O’Neill B C, Tebaldi C (2016) What would it take to achieve the Paris temperature targets? Geophys Res Lett 43:7133–7142CrossRefGoogle Scholar
  55. Saud P, Lynch T B, Anup K C, Guldin J M (2016) Using quadratic mean diameter and relative spacing index to enhance height-diameter and crown ratio models fitted to longitudinal data. Forestry 89:215–229CrossRefGoogle Scholar
  56. Schneider R, Franceschini T, Fortin M, Saucier J-P (2018) Climate-induced changes in the stem form of 5 North American tree species. Forest ecology and management.
  57. Seynave I, Gégout J -C, Hervé J -C, Dhôte J -F, Drapier J, Bruno E, Dumé G (2005) Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can J Forest Res 35:1669–1678CrossRefGoogle Scholar
  58. Sharma R P, Breidenbach J (2015) Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. For Sci Technol 11:44–53Google Scholar
  59. Smith D M, Larson B C, Kelty M J, Ashton PMS (1997) The Practice of Silviculture Applied Forest Ecology, 9th edn. Wiley, New YorkGoogle Scholar
  60. Temesgen H, von Gadow K (2004) Generalized height-diameter models – an application for major tree species in complex stands of interior British Columbia. Eur J For Res 123:45–51CrossRefGoogle Scholar
  61. UNFCCC (2015) Adoption of the Paris agreement. Technical report, United nations framework convention on climate change (UNFCCC).
  62. Van Couwenberghe R, Collet C, Pierrat J -C, Verheyen K, Gégout J -C (2013) Can species distribution models be used to describe plant abundance patterns? Ecography 36:665–674CrossRefGoogle Scholar
  63. Végiard S, Ung C -H (1993) Statistical inference problems related to the logarithmic transformation in regression; another method for interval estimation. Can J Forest Res 23:871–872CrossRefGoogle Scholar
  64. Way D A, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669– 688CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Mathieu Fortin
    • 1
    Email author
  • Rosalinde Van Couwenberghe
    • 2
  • Vincent Perez
    • 1
  • Christian Piedallu
    • 1
  1. 1.Université de Lorraine, AgroParisTech, Inra, SilvaNancyFrance
  2. 2.Herbes Folles à NancyNancyFrance

Personalised recommendations