Static site indices from different national forest inventories: harmonization and prediction from site conditions

  • Susanne BrandlEmail author
  • Tobias Mette
  • Wolfgang Falk
  • Patrick Vallet
  • Thomas Rötzer
  • Hans Pretzsch
Research Paper
Part of the following topical collections:
  1. Environmental data for the German NFI


Key message

Static site indices determined from stands’ top height are derived from different forest inventory sources with height and age information and thus enable comparisons and modeling of a species’ productivity encompassing large environmental gradients.


Estimating forest site productivity under changing climate requires models that cover a wide range of site conditions. To exploit different inventory sources, we need harmonized measures and procedures for the productive potential. Static site indices (SI) appear to be a good choice.


We propose a method to derive static site indices for different inventory designs and apply it to six tree species of the German and French National Forest Inventory (NFI). For Norway spruce and European beech, the climate dependency of SI is modeled in order to estimate trends in productivity due to climate change.


Height and age measures are determined from the top diameters of a species at a given site. The SI is determined for a reference age of 100 years.


The top height proves as a stable height measure that can be derived harmoniously from German and French NFI. The boundaries of the age-height frame are well described by the Chapman-Richards function. For spruce and beech, generalized additive models of the SI against simple climate variables lead to stable and plausible model behavior.


The introduced methodology permits a harmonized quantification of forest site productivity by static site indices. Predicting productivity in dependence on climate illustrates the benefits of combined datasets.


National forest inventories Climate Productivity 



We would like to thank the Thünen Institute of Forest Ecosystems and the Institut national de l’information géographique et forestière (IGN) for providing the NFI data. The study was funded by the Federal Ministry of Food and Agriculture and the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety of Germany in the frame of the Waldklimafonds. We would like to thank our partners in the project “Forest productivity – carbon sequestration – climate change” for the successful collaboration as well as the anonymous reviewers for their constructive criticism.


The work is part of the project WP-KS-KW (Waldproduktivität, Kohlenstoffspeicherung, Klimawandel; engl: Forest productivity, carbon sequestration, climate change) and was funded in the frame of the Waldklimafonds by the Federal Ministry of Food and Agriculture and the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety of Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Albert M (2000) Ein funktionalisierter Höhenergänzungsalgorithmus für Einzelbaumwachstumsmodelle. Jahrestagung der Sektion Ertragskunde des DVFFA in Kaiserslautern, 05.-07.06.2000:32-43Google Scholar
  2. Albert M, Schmidt M (2010) Climate-sensitive modelling of site-productivity relationships for Norway spruce (Picea abies (L.) Karst.) and common beech (Fagus sylvatica L.). For Ecol Manag 259:739–749CrossRefGoogle Scholar
  3. Assmann E (1961) Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft, München, Bonn, WienGoogle Scholar
  4. Assmann E, Franz F (1963) Vorläufige Fichten-Ertragstafel für Bayern, MünchenGoogle Scholar
  5. BMELV Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (2011) Aufnahmeanweisung für die dritte Bundeswaldinventur (BWI3) (2011-2012)Google Scholar
  6. Bontemps J-D, Bouriaud O (2014) Predictive approaches to forest site productivity: recent trends, challenges and future perspectives. Forestry 87:109–128CrossRefGoogle Scholar
  7. Brandl S, Falk W, Klemmt H-J, Stricker G, Bender A, Rötzer T, Pretzsch H (2014) Possibilities and limitations of spatially explicit site index modelling for spruce based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany). Forests 5:2626–2646CrossRefGoogle Scholar
  8. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  9. Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2012) Statistical mapping of tree species over Europe. Eur J For Res 131:145–157CrossRefGoogle Scholar
  10. Charru M, Seynave I, Hervé J-C, Bontemps J-D (2014) Spatial patterns of historical growth changes in Norway spruce across western European mountains and the key effect of climate warming. Trees 28:205–221CrossRefGoogle Scholar
  11. Conrad V (1946) Usual formulas of continentality and their limits of validity. Eos 27:663–664Google Scholar
  12. Dagnelie P, Palm R, Rondeux J, Thill A (1988) Tables de production relatives à l'épicéa commun (Picea abies KARST.). Les presses agronomique de Gembloux, GemblouxGoogle Scholar
  13. Dahm S (2006) Auswertungsalgorithmen für die zweite Bundeswaldinventur. Arbeitsbericht des Instituts für Waldökologie und Waldinventuren Nr. 2006 / 1, EberswaldeGoogle Scholar
  14. Dolos K, Mette T, Wellstein C (2016) Silvicultural climatic turning point for European beech and sessile oak in Western Europe derived from national forest inventories. For Ecol Manag 373:128–137CrossRefGoogle Scholar
  15. Eichhorn F (1902) Ertragstafeln für die Weißtanne. Springer, BerlinCrossRefGoogle Scholar
  16. Gehrhardt E (1909) Über Bestandeswachstumsgesetze und ihre Anwendung zur Aufstellung von Ertragstafeln. Allgemeine Forst- und Jagdzeitung 85:117–128Google Scholar
  17. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  18. IGN Institut national de l’information géographique et forestière Inventaire forestier national (IFN). Accessed 13 Oct 2016
  19. JRC – Joint Research Centre, European Soil Data Centre ESDAC (2001-2016) European soil database and soil properties. Accessed 13 Oct 2016
  20. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854CrossRefPubMedGoogle Scholar
  21. Kramer H, Akҫa A (1995) Leitfaden zur Waldmesslehre, 3rd edn. J.D. Sauerländer's Verlag, Frankfurt/MGoogle Scholar
  22. Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch C, Pretzsch H (eds) (2012) Growth and defence in plants. Ecol Studies 220. Springer-Verlag, HeidelbergGoogle Scholar
  23. McRoberts RE, Tomppo EO, Schadauer K, Ståhl G (eds) (2012) Special issue on COST action E43: harmonizing National Forest Inventories: (editorial + 10 articles). For Sci 58Google Scholar
  24. Mellert KH, Ewald J (2014) Nutrient limitation and site-related growth potential of Norway spruce (Picea abies [L.] Karst) in the Bavarian Alps 133:433–451Google Scholar
  25. Michel A, Seidling W (eds) (2017) Forest condition in Europe: 2017 technical report of ICP forests. Report under the UNECE convention on long-range transboundary air pollution (CLRTAP). BFW-Dokumentation 24/2017. Vienna: BFW Austrian Research Centre for Forests. 128 pGoogle Scholar
  26. Nabuurs GJ, Lindner M, Verkerk PJ, Gunia K, Deda P, Michalak R, Grassi G (2013) First signs of carbon sink saturation in European forest biomass. Nat Clim Chang 3:792–796CrossRefGoogle Scholar
  27. Nagel J, Biging GS (1995) Schätzung der Parameter der Weibull-Funktion zur Generierung von Durchmesserverteilungen. Allgemeine Forst- und Jagdzeitung 166:185–189Google Scholar
  28. Nothdurft A, Wolf T, Ringeler A, Böhner J, Saborowski J (2012) Spatio-temporal prediction of site index based on forest inventories and climate change scenarios. For Ecol Manag 279:97–111CrossRefGoogle Scholar
  29. Perin J, Hébert J, Brostaux Y, Lejeune P, Claessens H (2013) Modelling the top-height growth and site index of Norway spruce in Southern Belgium. For Ecol Manag 298:62–70CrossRefGoogle Scholar
  30. Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology: approaches and alternatives. Springer New York, New York, pp 110–135CrossRefGoogle Scholar
  31. Pott M (1997) Wachstum der Fichte in Bayern. Auswertung von Daten der Forsteinrichtungsdatenbank der Bayerischen Staatsforstverwaltung. Diploma thesis, LMU MünchenGoogle Scholar
  32. Pretzsch H (2009) Forest dynamics, growth and yield. Springer, HeidelbergCrossRefGoogle Scholar
  33. Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967CrossRefPubMedPubMedCentralGoogle Scholar
  34. Prietzel J, Rehfuess KE, Stetter U, Pretzsch H (2008) Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine (Pinus sylvestris L.) sites in Central Europe during 40 years after fertilization, liming, and lupine introduction. Eur J For Res 127:43–61CrossRefGoogle Scholar
  35. Pya N, Wood SN (2015) Shape constrained additive models. Stat Comput 25:543–559CrossRefGoogle Scholar
  36. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–301CrossRefGoogle Scholar
  37. Röhle H (1997) Änderung von Bonität und Ertragsniveau in südbayerischen Fichtenbeständen. Allg Forst- u.J.-Ztg 168:110–114Google Scholar
  38. Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242CrossRefGoogle Scholar
  39. Schober R (1995) Ertragstafeln wichtiger Baumarten bei verschiedener Durchforstung, 4th edn. Sauerländer, Frankfurt am MainGoogle Scholar
  40. Schultz J (2002) Ökozonen der Erde, Engl. edn. The ecozones of the World. Ulmer, Stuttgart, p 58Google Scholar
  41. Seynave I, Gégout JC, Hervé JC, Dhôte JF, Drapier J, Bruno É, Dumé G (2005) Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can J For Res 35:1669–1678CrossRefGoogle Scholar
  42. Seynave I, Gégout JC, Hervé JC, Dhôte JF (2008) Is the spatial distribution of European beech (Fagus sylvatica L.) limited by its potential height growth? J Biogeographica 35:1851–1862CrossRefGoogle Scholar
  43. Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31CrossRefGoogle Scholar
  44. Skovsgaard J, Vanclay JK (2013) Forest site productivity: a review of spatial and temporal variability in natural site conditions. Forestry 86:305–315CrossRefGoogle Scholar
  45. Sloboda B, Gaffrey D, Matsumura N (1993) Regionale und lokale Systeme von Höhenkurven für gleichaltrige Waldbestände. Allgemeine Forst- und Jagdzeitung 164:225–229Google Scholar
  46. Spiecker H (1999) Overview of recent growth trends in European forests. Water Air Soil Pollut 116:33–46CrossRefGoogle Scholar
  47. Tollefsrud MM, Ro K, Gugerli F, Johnsen Ø, Skrøppa T, Cheddadi R, Wo VDK, Latałowa M, Terhürne-Berson R, Litt T, Geburek T, Brochmann C, Sperisen C (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4134–4150CrossRefPubMedGoogle Scholar
  48. Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (eds) (2010) National Forest Inventories: pathways for common reporting. Springer Netherlands, DordrechtGoogle Scholar
  49. Vallet P, Perot T (2016) Tree diversity effect on dominant height in temperate forest. For Ecol Manag 381:106–114CrossRefGoogle Scholar
  50. Vannière B (1984) Tables de production pour les forêts françaises. ENGREF, 158pGoogle Scholar
  51. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Statistics and Computing. Springer, New YorkCrossRefGoogle Scholar
  52. von Baur F (1881) Das Forstl. Versuchswesen. Band I, Augsburg 359 pGoogle Scholar
  53. Wood S (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca RatonCrossRefGoogle Scholar
  54. Yue C, Kahle H-P, von Wilpert K, Kohnle U (2016) A dynamic environment-sensitive site index model for the prediction of site productivity potential under climate change. Ecol Model 337:48–62CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Susanne Brandl
    • 1
    Email author
  • Tobias Mette
    • 1
  • Wolfgang Falk
    • 1
  • Patrick Vallet
    • 2
    • 3
  • Thomas Rötzer
    • 4
  • Hans Pretzsch
    • 4
  1. 1.Bavarian State Institute of ForestryFreisingGermany
  2. 2.Univ. Grenoble Alpes, Irstea, UR EMGRSt-Martin-d’HèresFrance
  3. 3.Irstea, UR EFNONogent-sur-VernissonFrance
  4. 4.Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany

Personalised recommendations