The relative importance of soil properties and regional climate as drivers of productivity in southern Patagonia’s Nothofagus antarctica forests

  • Héctor A. BahamondeEmail author
  • Guillermo Martínez Pastur
  • María V. Lencinas
  • Rosina Soler
  • Yamina M. Rosas
  • Brenton Ladd
  • Sandra Duarte Guardia
  • Pablo L. Peri
Original Paper


Key message

Soil texture and temperature-related variables were the variables that most contributed to Nothofagus antarctica forest height in southern Patagonia. This information may be useful for improving forest management, for instance related to the establishment of silvopastoral systems or selection of suitable sites for forest reforestation in southern Patagonia.


Changes in forest productivity result from a combination of climate, topography, and soil properties.


The relative importance of edaphic and climatic variables as drivers of productivity in Nothofagus antarctica forests of southern Patagonia, Argentina, was evaluated.


A total of 48 mature stands of N. antarctica were selected. For each study site, we measured the height of three mature dominant trees, as an indicator of productivity. Seven soil, five spatial, and 19 climatic features were determined and related to forest productivity. Through partial least squares regression analyses, we obtained a model that was an effective predictor of height of mature dominant trees in the regional data set presented here.


The four variables that most contributed to the predictive power of the model were altitude, temperature annual range, soil texture, and temperature seasonality.


The information gathered in this study suggested that the incidence of the soil and temperature-related variables on the height of dominant trees, at the regionally evaluated scale, was higher than the effect of water-related variables.


Carbon sequestration Native forest Nothofagus antarctica ñire South America Trees 



We are very grateful to Francisco Mattenet for helping with the field sampling and Victoria Fernández for helping with language revision.


This work was part of the research project “Sinergias y conflictos entre las actividades económicas y los socio-ecosistemas de Tierra del Fuego: Mantenimiento de la productividad y los servicios ecosistémicos en el largo plazo”. CONICET. Proyectos de Unidades Ejecutoras (P-UE 2016). Res 3334/16.

This research has been partially financed by Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bahamonde HA, Peri PL, Alvarez R, Barneix A (2012a) Producción y calidad de gramíneas en un gradiente de calidades de sitio y coberturas en bosques de Nothofagus antarctica (G. Forster) Oerst. en Patagonia. Ecol Austral 22:62–73Google Scholar
  2. Bahamonde HA, Peri PL, Alvarez R, Barneix A, Moretto A, Martínez Pastur G (2012b) Litter decomposition and nutrients dynamics in Nothofagus antarctica forests under silvopastoral use in Southern Patagonia. Agrofor Syst 84:345–360CrossRefGoogle Scholar
  3. Bahamonde HA, Peri PL, Alvarez R, Barneix A, Moretto A, Martínez Pastur G (2013) Silvopastoral use of Nothofagus antarctica in Southern Patagonian forests, influence over net nitrogen soil mineralization. Agrofor Syst 87:259–271CrossRefGoogle Scholar
  4. Bahamonde HA, Peri PL, Mayo JP (2014) Modelo de simulación de producción de materia seca y concentración de proteína bruta de gramíneas creciendo en bosques de Nothofagus antarctica (G. Forster) Oerst. bajo uso silvopastoril. Ecol Austral 24:111–117Google Scholar
  5. Bahamonde HA, Peri PL, Martínez Pastur G, Monelos LH (2015) Litterfall and nutrients return in Nothofagus antarctica forests growing in a site quality gradient with different management uses in Southern Patagonia. Eur J For Res 134(1):113–124CrossRefGoogle Scholar
  6. Bahamonde HA, Lencinas MV, Martínez Pastur G, Monelos L, Soler R, Peri PL (2016) Ten years of seed production and establishment of regeneration measurements in Nothofagus antarctica forests under different crown cover and quality sites, in Southern Patagonia. Agrofor Syst. CrossRefGoogle Scholar
  7. Bahamonde HA, Sánchez-Gómez D, Gyenge J, Peri PL, Cellini JM, Aranda I (2017) Thinking in the sustainability of Nothofagus antarctica silvopastoral systems, how differ the responses of seedlings from different provenances to water shortage? Agrofor Syst.
  8. Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405(6787):668–673CrossRefPubMedGoogle Scholar
  9. Barrera MD, Frangi JL, Richter LL, Perdomo MH, Pinedo LB (2000) Structural and functional changes in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. J Veg Sci 11(2):179–188CrossRefGoogle Scholar
  10. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence since the middle of the 20th century. Glob Chang Biol 12:1–21CrossRefGoogle Scholar
  11. Borrello A (1972) Cordillera Fueguina. In: Leanza H (ed) Geología Regional Argentina. Academia Nacional de Ciencias de Córdoba, Córdoba, Argentina, pp 741–754Google Scholar
  12. Burger JA, Kelting DL (1999) Using soil quality indicators to assess forest stand management. For Ecol Manag 122:155–156CrossRefGoogle Scholar
  13. Churkina G, Running SW (1998) Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1:206–215CrossRefGoogle Scholar
  14. Collado L (2001) Los Bosques de Tierra del Fuego. Análisis de su estratificación mediante imágenes satelitales para el inventario forestal de la Provincia Multequina 10:1–16Google Scholar
  15. Coronato AM, Coronato F, Mazzoni E, Vázquez M (2008) The physical geography of Patagonia and Tierra del Fuego. Dev Quat Sci 11:13–55Google Scholar
  16. Donoso C, Steinke L, Premoli A (2006) Nothofagus antarctica (G. Forster) Oerst. In: Donoso Zegers C (ed) Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología, Valdivia, Chile, pp 401–410Google Scholar
  17. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004CrossRefGoogle Scholar
  18. Fisher RF, Binkley D (2000) Ecology and management of forest soils, 3rd edn. Wiley, New YorkGoogle Scholar
  19. Gargaglione V, Peri PL, Rubio G (2013) Partición diferencial de nutrientes en árboles de Nothofagus antarctica creciendo en un gradiente de calidades de sitio en Patagonia Sur. Bosque 34:291–302CrossRefGoogle Scholar
  20. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  21. Ivancich H, Martínez Pastur G, Peri PL (2011) Modelos forzados y no forzados para el cálculo de índice de sitio en bosques de Nothofagus antarctica en Patagonia Sur. Bosque 32:135–145CrossRefGoogle Scholar
  22. Kreps G, Martínez Pastur G, Peri PL (2012) Cambio climático en Patagonia Sur. Escenarios futuros en el manejo de los recursos naturales. Ediciones INTA 101Google Scholar
  23. Ladd B, Bonser SP, Peri PL, Larsen JR, Laffan SW, Pepper DA, Cendón DI (2009) Towards a physical description of habitat: quantifying environmental adversity (abiotic stress) in temperate forest and woodland ecosystems. J Ecol 97:964–971CrossRefGoogle Scholar
  24. Ladd B, Peri PL, Pepper DA, Silva LCR, Sheil D, Bonser SP, Laffan SW, Amelung W, Ekblad A, Eliasson P, Bahamonde H, Duarte Guardia S, Bird M (2014) Carbon isotopic signatures of soil organic matter correlate with leaf area index across woody biomes. J Ecol 102(6):1606–1611CrossRefGoogle Scholar
  25. Martínez Pastur G, Soler Esteban R, Cellini JM, Lencinas MV, Peri PL, Neyland M (2014) Survival and growth of Nothofagus pumilio seedlings under several microenvironments after variable retention harvesting in southern Patagonian forests. Ann For Sci 71:349–362CrossRefGoogle Scholar
  26. Massaccesi G, Roig FA, Martínez Pastur G, Barrera M (2008) Growth patterns of Nothofagus pumilio trees along altitudinal gradients in Tierra del Fuego, Argentina. Trees 22:245–255CrossRefGoogle Scholar
  27. McCune B, Mefford MJ (1999) Multivariate analysis of ecological data. MjM Software, Gleneden BeachGoogle Scholar
  28. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myseni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefPubMedGoogle Scholar
  29. Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and control son biotic processes. Ecol Austral 8:85–101Google Scholar
  30. Peri PL, Ormaechea SG (2013) Relevamiento de los bosques nativos de ñire (Nothofagus antarctica) en Santa Cruz: base para su conservación y manejo. Ediciones INTA web Accessed 10 December 2016Google Scholar
  31. Peri PL, Gargaglione V, Martínez Pastur G, Lencinas MV (2010) Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. For Ecol Manag 260:229–237CrossRefGoogle Scholar
  32. Peri PL, Bahamonde H, Christiansen R (2015) Soil respiration in Patagonian semiarid grasslands under contrasting environmental and use conditions. J Arid Environ 119:1–8CrossRefGoogle Scholar
  33. Peri PL, Bahamonde HA, Lencinas MV, Gargaglione V, Soler R, Ormaechea S, Pastur GM (2016) A review of silvopastoral systems in native forests of Nothofagus antarctica in southern Patagonia, Argentina. Agrofor Syst 90(6):933–960CrossRefGoogle Scholar
  34. Peri PL, Lencinas MV, Bousson J, Lasagno R, Soler R, Bahamonde H, Pastur G (2016b) Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: the case of PEBANPA network. J Nat Conserv 34:51–64CrossRefGoogle Scholar
  35. Premoli AC, Mathiasen P, Acosta MC, Ramos VA (2012) Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus ss How deep can it be?. New Phytol 193(1): 261–275CrossRefPubMedGoogle Scholar
  36. Ramos V (1999) Las provincias geológicas del territorio argentino. In: SEGEMAR (ed.), Geología Argen-tina, Instituto de Geología y Recursos Minerales, Buenos Aires, Anales 29: 341–96Google Scholar
  37. SAyDS (2005) Primer Inventario Nacional de Bosques Nativos. Ministerio de Salud y Ambiente de la Nación. Secretaría de Ambiente y Desarrollo Sustentable, Buenos Aires, p 86Google Scholar
  38. Schoenholtz SH, Van Miegroet H, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For Ecol Manag 138:335–356CrossRefGoogle Scholar
  39. Skovsgaard JP, Vanklay JK (2008) Forest site productivity: a re-view of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31CrossRefGoogle Scholar
  40. Strahler A, Strahler AN (2000) Introducing physical geography, 2nd edn. John Wiley & Sons, Inc, New YorkGoogle Scholar
  41. Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of Southern Chilean and Argentinean Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, News Haven, pp 293–353Google Scholar
  42. Zomer RJ, Trabucco A, Bossio DA, van Straaten O, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Héctor A. Bahamonde
    • 1
    • 2
    Email author
  • Guillermo Martínez Pastur
    • 3
    • 4
  • María V. Lencinas
    • 3
    • 4
  • Rosina Soler
    • 3
    • 4
  • Yamina M. Rosas
    • 3
    • 4
  • Brenton Ladd
    • 5
    • 6
  • Sandra Duarte Guardia
    • 5
  • Pablo L. Peri
    • 3
  1. 1.Instituto Nacional de Tecnología Agropecuaria (INTA)Río GallegosArgentina
  2. 2.Universidad Nacional de la Patagonia Austral (UNPA)Río GallegosArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Centro Austral de Investigaciones Científicas (CADIC)UshuaiaArgentina
  5. 5.Escuela de Agroforestería, Universidad Científica del SurLimaPeru
  6. 6.Earth and Environmental Sciences, Evolution and Ecology Research Centre, School of BiologicalUNSW AustraliaSydneyAustralia

Personalised recommendations