A simple model for shrub-strata-fuel dynamics in Quercus coccifera L. communities

  • François PimontEmail author
  • Jean-Luc Dupuy
  • Eric Rigolot
Original Paper


Key message

We model the dynamics of fuel characteristics in shrub strata dominated by Quercus coccifera L. with data gathered in available literature. The model expresses the variability of this important fire-prone fuel type thanks to yield classes, and it can be used to investigate management scenarios. The approach could easily be applied to other shrub communities.


Characterizing fuel is a basic requirement for fire hazard assessment. Quercus coccifera L. is present in several Mediterranean fire-prone communities, and its fuel characteristics have been studied over various Mediterranean countries, but no general model describes its dynamics.


Herein, we present such a general model, initially developed for operational purposes at the French Forest Service.


We review available literature and fit statistical relationships to predict the dynamics of fuel height and biomass, by size categories of fine fuel elements.


The model estimates fuel characteristics from shrub-strata age, overstorey cover, and yield class with a reasonable degree of accuracy considering the heterogeneity of the datasets. It shows that bulk density is highly sensitive to overstorey, and in a lesser extent to strata age, which could lead to significant bias when assessing fuel properties from general allometries. The model is integrated in the FuelManager software, which is devoted to fuel modeling for physics-based-fire-behavior models.


This simple approach enables to provide a fuel model for the Quercus coccifera L. shrub strata in the Mediterranean basin. It is more general than the existing relationships available for local data. This approach could be generalized to other fire-prone communities.


Fire hazard Mediterranean basin Fuel accumulation Understorey Kermes oak Fuel load 



We would like to thank the people who contributed to the collection and publication of data used all along this study. We thank Philippe Dreyfus (French Forest Service, Research Development and Innovation division), for his useful reading of the manuscript.



Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

13595_2018_713_MOESM1_ESM.docx (232 kb)
ESM 1 (DOCX 232 kb)


  1. Anderson WR, Cruz MG, Fernandes PM, McCaw L, Vega JA, Bradstock RA, Fogarty L, Gould J, McCarthy G, Marsden-Smedley JB, Matthews S, Mattingley G, Pearce HG, van Wilgen BW (2015) A generic, empirical-based model for predicting rate of fire spread in shrublands. Int J Wildland Fire 24:443–460CrossRefGoogle Scholar
  2. Armand D, Etienne M, Legrand C, Marechal J, Valette JC (1993) Phytovolume, phytomasse et relations structurales chez quelques arbustes méditerranéens. Ann Sci For 50:79–89CrossRefGoogle Scholar
  3. Baesa MJ, Raventos J, Escarré A, Vallejo VR (2006) Fire risk and vegetation structural dynamics in the Mediterranean shrubland. Plant Ecol 187:189–201CrossRefGoogle Scholar
  4. Balaguer L, Martinez-Ferri E, Valladares F, Perez-corona ME, Baquedano FJ, Catillo FJ, Manrique E (2001) Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Funct Ecol 15:124–135CrossRefGoogle Scholar
  5. Bardaji Mir M (1996) Effectos a corto plazo de la quema controlada sobre la vegetacion, en una formation de Pinus halepensis (Mill) de la region mediterranea francesa. INRA-PIF/Universidad de Lerida. 90pGoogle Scholar
  6. Braun-Blanquet J, Poussine N, Negre R (1952) Les groupements végétaux de la France méditerranéenne. CNRS Ed. 297 pGoogle Scholar
  7. Cañellas I, San Miguel A (2000) Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain. Ann For Sci 57:803–810CrossRefGoogle Scholar
  8. Cassagne N, Pimont F, Dupuy JL, Linn RR, Marrels A, Olivieri C, Rigolot R. 2011. Using a fire propagation model to assess the efficiency of prescribed burning in reducing the fire hazard. Ecological Modelling 222:1502–1514.CrossRefGoogle Scholar
  9. Delitti W, Ferran A, Trabaud L, Vallejo VR (2005) Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia region (Spain): I. Plant composition and productivity. Plant Ecol 177:57–70CrossRefGoogle Scholar
  10. Diaz-Delgado R, Lloret F, Pons X, Terradas J (2002) Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology 83:2293–2303CrossRefGoogle Scholar
  11. Dimitrakopoulos AP (2002) Mediterranean fuel models and potential fire behavior in Greece. Int J Wildland Fire 1:127–130CrossRefGoogle Scholar
  12. Duff TJ, Bell TL, York A (2012) Predicting continuous variation in forest fuel load using biophysical models: a case study in south-eastern Australia. Int J Wildland Fire 22:318–332CrossRefGoogle Scholar
  13. Duff TJ, Keane RE, Penman TD, Tolhurst KG (2017) Revisiting wildland fire fuel quantification methods: the challenge of understanding a dynamic, biotic entity. Forests 8:351CrossRefGoogle Scholar
  14. Dureau, R (2003). Gestion des garrigues à chêne kermès sur coupures de combustible. Réseau Coupures de combustible n°8 – Ed de la Cardère Morières, 83pGoogle Scholar
  15. Gould JS, McCaw WL, Cheney NP (2011) Quantyfing fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. For Ecol Manag 262:531–546CrossRefGoogle Scholar
  16. Hogenbirk JC, Sarrazin-Delay CL (1995) Using fuel characteristics to estimate plant ignitability for fire hazard reduction. Water Air Soil Pollut 82:161–170CrossRefGoogle Scholar
  17. Kaye JP, Romanyà J, Vallejo VR (2010) Plant and soil carbon accumulation following fire in Mediterranean woodlands in Spain. Oecologia 164:533–543CrossRefPubMedGoogle Scholar
  18. Keane RE, Cary GJ, Davies ID, Flannigan MD, Gardner RH, Lavorel S, Lenihan JM, Chao L, Rupp TS (2004) A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics. Ecol Model 179:3–27CrossRefGoogle Scholar
  19. Konstantinidis P, Tsiourlis G, Galatsidas S (2005) Effects of wildfire season on the resprouting of kermes oak (Quercus coccifera L.) For Ecol Manag 208:15–27CrossRefGoogle Scholar
  20. Koukoura Z (1987) Light intensity effects on dynamic growth of kermes oak (Quercus coccifera L.) Ecol Mediterr XIII:19–25Google Scholar
  21. Landreau P (1988) Le chêne kermès : relation phytovolume/phytomasse. Etude de la propagation du feu. Rapport de BTS. 24pGoogle Scholar
  22. Le Houérou HN (1981) Ecosystems of the world 11: Mediterranean-type shrublands, chap. 25. Impact of man and his animals. Elsevier Scientific Publishing Company, AmsterdamGoogle Scholar
  23. Lloret F, Vilà M (1997) Clearing of vegetation in Mediterranean garrigue: response after a wildfire. For Ecol Manag 93:227–234CrossRefGoogle Scholar
  24. Marino E, Dupuy JL, Pimont F, Guijarro M, Hernando C, Linn R (2012) Fuel bulk density and fuel moisture content effect on fire rate of spread: a comparison between FIRETEC model predictions and experimental results in shrub fuels. J Fire Sci 30:277–299CrossRefGoogle Scholar
  25. Moreno JM, Oechel WC (1994) The role of fire in Mediterranean-type ecosystems. Ecologica Studies 107, Spring Verlag, p 1–13Google Scholar
  26. Mouillot F, Rambal S, Lavorel S (2001) A generic process-based simulator for mediterranean landscapes (SIERRA): design and validation exercises. For Ecol Manag 147:75–97CrossRefGoogle Scholar
  27. Panik MJ (2014) Growth curve modeling: theory and applications. ISBN: 978-1-118-76404-6. Wiley & Son Ltd. 454 pGoogle Scholar
  28. Papatheoudorou RM, Pantis JD, Stamou GP (1998) The effect of grazing on phenology and biomass allocation in Quercus coccifera (L.) Acta Oecol 19:339–347CrossRefGoogle Scholar
  29. Paraskevopoulos SP, Iatrou GD, Pantis JD (1994) Plant-growth strategies in evergreen-sclerophyllous shrublands (maquis) in central Greece. Vegetatio 115:109–114Google Scholar
  30. Pausas JG, Carbo E, Caturla RN, Gil JM, Vallejo R (1999) Post-fire regeneration patterns in the eastern Iberian Peninsula. Acta Oecol 20:499–508CrossRefGoogle Scholar
  31. Pearce HG, Anderson WR, Fogarty LG, Todoroki CL, Anderson SAJ (2010) Linear mixed-effects models for estimating biomass and fuel loads in shrublands. Can J For Res 40:2015–2026CrossRefGoogle Scholar
  32. Pimont F (2004) Modifications de l’architecture du Chêne kermès (Quercus coccifera, L.) en fonction de l’environnement de croissance. Rapport de DEA. Université de la Montpellier II, 63ppGoogle Scholar
  33. Pimont F, Dupuy J-L, Linn RR, Dupont S. 2011. Impact of tree canopy structure on wind-flows and fire propagation simulated with FIRETEC. Annals of Forest Sciences, 68:523–530CrossRefGoogle Scholar
  34. Pimont F, Parsons R, Rigolot E, Coligny F, Dupuy J-L, Dreyfus P, Linn R (2016) Modeling fuels and fire effects in 3D: model description and applications. Environ Model Softw 80:225–244CrossRefGoogle Scholar
  35. Rego F, Pereira J, Trabaud L (1993) Modelling community dynamics of Quercus coccifera L. garrigue in relation to fire using Markov chains. Ecol Model 66:251–260CrossRefGoogle Scholar
  36. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper, INT-115, Ogden, UT, 49 pp.Google Scholar
  37. Sağlam B, Küçük Ö, Bilgili E, Durmaz BD, Baysal İ (2008) Estimating fuel biomass of some shrub species (Maquis) in Turkey. Turk J Agric For 32:349–356Google Scholar
  38. Sala A, Sabaté S (1987) Structure and organisation of a Quercus coccifera garrigue after fire. Ecol Mediterr XIII:99–110Google Scholar
  39. Saura-Mas S, Paula S, Pausas JG, Lloret F (2010) Fuel loading and flammability in the Mediterranean Basin wood species with different post-fire regenerative strategies. Int J Wildland Fire 19:783–794CrossRefGoogle Scholar
  40. Sullivan AL (2009a) Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models. Int J Wildland Fire 18:349–368CrossRefGoogle Scholar
  41. Sullivan AL (2009b) Wildland surface fire spread modelling, 1990–2007. 2: empirical and quasi-empirical models. Int J Wildland Fire 18:369–386CrossRefGoogle Scholar
  42. Terrier A, Paquette M, Gauthier S, Girardin PM, Pelletier-Bergeron S, Bergeron Y (2017) Influence of fuel load dynamics on carbon emission by wildfires in the clay belt boreal landscape. Forests 8:9CrossRefGoogle Scholar
  43. Thomson D, Simpson B, de Groot B, Krezek-Hanes C, Taylor S, Wotton M (2016) Driving fire behaviour models with forest inventory data in Canada. Proceedings for the 5th International Fire Behavior and Fuels Conference April 11-15, 2016, Portland, Oregon, USA. IAWF. Missoula, Montana, USAGoogle Scholar
  44. Trabaud L (1983) Evolution après incendie de la structure de quelques phytocénoses méditerranéennes du Bas-Languedoc (Sud de la France). Ann Sci For 40:177–196CrossRefGoogle Scholar
  45. Trabaud L (1990) Fire resistance of Quercus coccifera L. garrigue. Fire in Ecosystem Dynamics, pp 21-32. Proceedings of the third International Symposium on Fire Ecology, Freiburg, FRG, May 1989. Edited by J.G. Goldammer and M.J. Jenkins. 190 SPB Academic Publishing bv, The Hague, The NetherlandsGoogle Scholar
  46. Trabaud L (1991) Fire regimes and phytomass growth dynamics in a Quercus coccifera L. garrigue (Southern France). J Veg Sci 2:307–314CrossRefGoogle Scholar
  47. Trabaud L, de Chanterac B (1985) The influence of fire on the phenological behaviour of Mediterranean plant species in Bas-Languedoc (Southern France). Vegetatio 60:119–130Google Scholar
  48. Trabaud L, Grosman J, Walter T (1985) Recovery of burnt Pinus halepensis Mill. forests. I. Understorey and litter phytomass development after wildfire. For Ecol Manag 12:269–277CrossRefGoogle Scholar
  49. Tsiouvaras CN, Noitsakis B, Papanastasis VP (1986) Clipping intensity improves rate of Kermès oak twigs. For Ecol Manag 15:229–237CrossRefGoogle Scholar
  50. Valladares F, Martinez-Ferri E, Balaguer L, Perez-Corona E, Manrique E (2000) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol 148:79–91CrossRefGoogle Scholar
  51. Werner C, Ruel RJ, Correia O, Beyschlag W (2001) Structural and functional variability within the canopy and its relevance for carbon gain and stress avoidance. Acta Oecol 22:129–138CrossRefGoogle Scholar
  52. Yasin K, Bahtiyar LA (2014) Biomass equations and aboveground biomass carbon stocks of Kermes Oak (Quercus coccifera L.) in Southwestern Turkey. Res J Biotech 9:53–61Google Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INRA, UR 629AvignonFrance

Personalised recommendations