Predicting suitability of forest dynamics to future climatic conditions: the likely dominance of Holm oak [Quercus ilex subsp. ballota (Desf.) Samp.] and Aleppo pine (Pinus halepensis Mill.)

Original Paper
Part of the following topical collections:
  1. Mediterranean Pines

Abstract

Key message

Composite logistic regression models simulating the potential effect of global climate change on forests dynamics in the southern Iberian Peninsula identify Holm oak [ Quercus ilex subsp. ballota (Desf.) Samp.] and Aleppo pine ( Pinus halepensis Mill.) as the chief beneficiaries of the anticipated environmental shifts, whereas other oak species and conifers suffer a decline.

Context

The ten most important tree species (five oaks and five conifers) in Southern Spain were selected for the study. The study area, corresponding to the region of Andalusia, is located in an interesting position between Central European and North African climates. The territory also exhibits the most extreme patterns of rainfall in the Iberian Peninsula.

Aims

This study aims to model the potential distribution of the ten species in response to climate change, in several time periods, including the present and two future twenty-first century dates.

Methods

The potential distributions within the different scenarios were simulated using logistic regression techniques based on a set of 19 climate variables from the WorldClim 1.4 project. The scenarios were drawn from the RCP 2.6 and 6.0 in the CCSM4 Global Circulation Model. The resolution of the output maps was 30 arc-seconds.

Results

The simulation predicted increased distribution areas for Q. ilex and P. halepensis under the four future scenarios as compared to present. The eight remaining taxa suffered a severe retraction in potential distribution.

Conclusion

Global climate change is likely to have a significant impact on forest dynamics in southern Spain. Only two species would benefit to the detriment of the others. Logistic Regression is identified as a robust method for carrying out management and conservation programmes.

Keywords

Species distribution models Tree dominance and codominance Potential distribution Southern Spain Global change 

Notes

Acknowledgements

The authors are grateful to the Economy, Innovation, Science and Employment Council of the Andalusian Regional Government for supporting this research in the framework of the Project “Modelo espacial de distribución de las quercíneas y otras formaciones forestales de Andalucía: una herramienta para la gestión y la conservación del patrimonio natural” (Code P10-RNM-6013). This is a contribution from the CEIMAR Journal Series.

Supplementary material

13595_2018_702_MOESM1_ESM.docx (16.9 mb)
ESM 1 (DOCX 16.8 MB)

References

  1. Abellanas B, Abellanas M, Pommerening A, Lodares D, Cuadros S (2016) A forest simulation approach using weighted Voronoi diagrams. An application to Mediterranean fir Abies pinsapo Boiss stands. Forest Systems 25(2):e062.  https://doi.org/10.5424/fs/2016252-08021 CrossRefGoogle Scholar
  2. Aguiar C, Capelo J, Catry F (2007) A distribuição dos pinhais em Portugal, 89–104 pp. In: Silva JS (Ed.). Pinhais E Eucaliptais—A Floresta Cultivada. Jornal Público/Fundação Luso-Americanapara o Desenvolvimento/Liga para a Protecção da Natureza, Lisbon, PortugalGoogle Scholar
  3. Al-Qaddi N, Vessella F, Stephan J, Al-Eisawi D, Schirone B (2016) Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Reg Environ Chang 17(1):143–156.  https://doi.org/10.1007/s10113-016-0987-2 CrossRefGoogle Scholar
  4. Alba-Sánchez F, López-Sáez JA, Benito-de Pando B, Linares JC, Nieto-Lugilde D, López-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Divers Distrib 16(2):214–228.  https://doi.org/10.1111/j.1472-4642.2010.00636.x CrossRefGoogle Scholar
  5. Albuixech J, Camarero JJ, Montserrat-Marti G (2012) Dinámica estacional del crecimiento secundario y anatomía del xilema en dos Quercus mediterráneos que coexisten. Forest Syst 21(1):9–22.  https://doi.org/10.5424/fs/2112211-12076 CrossRefGoogle Scholar
  6. Alix-Garcia J, Munteanu C, Zhao N, Potapov PV, Prishchepov AV, Radeloff VC, Krylov A, Bragina E (2016) Drivers of forest cover change in Eastern Europe and European Russia, 1985–2012. Land Use Policy 59:284–297.  https://doi.org/10.1016/j.landusepol.2016.08.014 CrossRefGoogle Scholar
  7. Álvarez M (2013) Reploblaciones y trabajos de Regeneración en el Pinsapar de la “Sierra de las Nieves” (Málaga), 150-157 pp. In: López Quintanilla J (coord.) Los pinsapares en Andalucia (Abies pinsapo Boiss.) Conservación y sostenibilidad en el siglo XXI. Servicio de publicaciones University of Cordoba, SpainGoogle Scholar
  8. Arosa ML, Bastos R, Cabral JA, Freitas H, Costa SR, Santos M (2017) Long-term sustainability of cork oak agro-forests in the Iberian Peninsula: a model-based approach aimed at supporting the best management options for the montado conservation. Ecol Model 343:68–79.  https://doi.org/10.1016/j.ecolmodel.2016.10.008 CrossRefGoogle Scholar
  9. Attorre F, De Sanctis M, Farcomeni A, Guillet A, Scepi E, Vitale M, Pella F, Fasola M (2013) The use of spatial ecological modelling as a tool for improving the assessment of geographic range size of threatened species. J Nat Conserv 21(1):48–55.  https://doi.org/10.1016/j.jnc.2012.10.001 CrossRefGoogle Scholar
  10. Bede-Fazekas A, Horvath L, Kocsis M (2014) Impact of climate change on the potential distribution of Mediterranean pines. Idojaras 118:41–52Google Scholar
  11. Blanca G, Cabezudo B, Cueto M, Salazar C, Morales Torres C (eds.) (2009) Flora Vascular de Andalucía Oriental. Universidades de Almería, Granada, Jaén y Málaga, Granada, SpainGoogle Scholar
  12. Bonthoux S, Baselga A, Balent G (2013) Assessing community-level and single-species models predictions of species distributions and assemblage composition after 25 years of land cover change. PLoS One 8(1):e54179.  https://doi.org/10.1371/journal.pone.0054179 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ceballos L, Ruiz de la Torre J (1979) Árboles y arbustos, 1st edn. Escuela Técnica Superior de Ingenieros de Montes, MadridGoogle Scholar
  14. Chai Z, Fan D, Wang D (2016) Environmental factors and underlying mechanisms of tree community assemblages of pine-oak mixed forests in the Qinling Mountains, China. J Plant Biol 59:357–367CrossRefGoogle Scholar
  15. Conedera M, Colombaroli D, Tinner W, Krebs P, Whitlock C (2016) Insights about past forest dynamics as a tool for present and future forest management in Switzerland. Forest Ecol Manag 388:100–112.  https://doi.org/10.1016/j.foreco.2016.10.027 CrossRefGoogle Scholar
  16. Corcuera L, Camarero JJ, Gil-pelegrín E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18:83–92CrossRefGoogle Scholar
  17. Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (2005) Los Bosques Ibéricos. Una interpretación geobotánica, Editorial Planeta, BarcelonaGoogle Scholar
  18. de Castro M, Martín-Vide J, Alonso S (2005) El clima de España: pasado, presente y escenarios de clima para el siglo XXI. In: Moreno Rodríguez JM (ed) Evaluación preliminar de los impactos en España por efecto del cambio climático, Ministerio de Medio Ambiente y Universidad de Castilla–La Mancha, pp 1–64Google Scholar
  19. del Castillo J, Comas C, Voltas J, Ferrio JP (2016) Dynamics of competition over water in a mixed oak-pine Mediterranean forest: spatio-temporal and physiological components. Forest Ecol Manag 382:214–224.  https://doi.org/10.1016/j.foreco.2016.10.025 CrossRefGoogle Scholar
  20. Fernandes P, Antunes C, Pinho P, Máguas C, Correia O (2016) Natural regeneration of Pinus pinaster and Eucalyptus globulus from plantation into adjacent natural habitats. Forest Ecol Manag 378:91–102.  https://doi.org/10.1016/j.foreco.2016.07.027 CrossRefGoogle Scholar
  21. Fernández-Cancio A, Navarro Cerrillo RM, Fernández Fernández R, Gil Hernández P, Manrique Menéndez E, Calzado Martínez C (2007) Climate classification of Abies pinsapo Boiss. forests in Southern Spain. Investigación Agraria: Sistemas y Recursos Forestales 16:222–229Google Scholar
  22. Fernández-Ondoño E, Rojo Serrano L, Jiménez MN, Navarro FB, Díez M, Martín F, Fernández J, Martínez FJ, Roca A, Aguilar J (2010) Afforestation improves soil fertility in south-eastern Spain. Eur J Forest Res 129(4):707–717.  https://doi.org/10.1007/s10342-010-0376-1 CrossRefGoogle Scholar
  23. Feurdean A, Florescu G, Vannière B, Tanţău I, O’Hara RB, Pfeiffer M, Hutchinson SM, Gałka M, Moskal-del Hoyo M, Hickler T (2017) Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. Forest Ecol Manag 389:15–26.  https://doi.org/10.1016/j.foreco.2016.11.046 CrossRefGoogle Scholar
  24. Frelich LE (2002) Forest dynamics and disturbance regimes. Cambridge University Press, Cambridge, England.  https://doi.org/10.1017/CBO9780511542046 CrossRefGoogle Scholar
  25. Galván JV (2012) Variabilidad poblacional en encina (Quercus ilex subsp. ballota (Desf.) Samp.): morfometría, espectroscopía de infrarrojo cercano y proteómica. Dissertation, University of Cordoba, SpainGoogle Scholar
  26. Garcia-Gonzalo J, Marques S, Borges JG, Botequim B, Oliveira MM, Tome J, Tome M (2011) A three-step approach to post-fire mortality modelling in maritime pine (Pinus pinaster Ait) stands for enhanced forest planning in Portugal. Forestry 84(2):197–206.  https://doi.org/10.1093/forestry/cpr006 CrossRefGoogle Scholar
  27. Génova Fuster MM (2013) Dendroclimatología de Abies pinsapo. In: López Quintanilla J (coord.) Los pinsapares en Andalucia (Abies pinsapo Boiss.) Conservación y sostenibilidad en el siglo XXI. Servicio de publicaciones University of Cordoba, SpainGoogle Scholar
  28. González-Muñoz N, Linares JC, Castro-Díez P, Sass-Klaassen U (2014) Predicting climate change impacts on native and invasive tree species using radial growth and twenty-first century climate scenarios. Eur J For Res 133(6):1073–1086.  https://doi.org/10.1007/s10342-014-0823-5 CrossRefGoogle Scholar
  29. Guisan A, Zimmermann E (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2-3):147–186.  https://doi.org/10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  30. Hidalgo PJ, Marín JM, Quijada J, Moreira JM (2008) A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. Forest Ecol Manag 255(1):25–34.  https://doi.org/10.1016/j.foreco.2007.07.012 CrossRefGoogle Scholar
  31. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978Google Scholar
  32. IPCC (2014) Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva (Switzerland)Google Scholar
  33. Klausmeyer KR, Shaw MR (2009) Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. Plos One 4 (7).  https://doi.org/10.1371/journal.pone.0006392
  34. Leiva MJ, Díaz-Maqueda A (2016) Fast-growing seeds and delayed rodent predatory activity in the seeding season: a combined mechanism to escape and survive rodent predation in Quercus ilex subsp. ballota L. acorns and seedlings. Forest Ecol Manag 380:23–30.  https://doi.org/10.1016/j.foreco.2016.08.038 CrossRefGoogle Scholar
  35. Linares JC, Camarero JJ, Carreira JA (2009) Interacting effects of climate and forest-cover changes on mortality and growth of the southernmost European fir forests. Glob Ecol Biogeogr 18(4):485–497.  https://doi.org/10.1111/j.1466-8238.2009.00465.x CrossRefGoogle Scholar
  36. Linares JC, Camarero JJ, Carreira JA (2010) Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. J Ecol 98(3):592–603.  https://doi.org/10.1111/j.1365-2745.2010.01645.x CrossRefGoogle Scholar
  37. Linares JC, Carreira JA (2009) Temperate-like stand dynamics in relict Mediterranean-fir (Abies pinsapo, Boiss.) forests from southern Spain. Ann Forest Sci 66(6):610.  https://doi.org/10.1051/forest/2009040 CrossRefGoogle Scholar
  38. López González GA (2007) Guía de los árboles y arbustos de la Península Ibérica y Baleares, 3ª edición. Ediciones Mundi-Prensa, MadridGoogle Scholar
  39. López-Tirado J, Hidalgo PJ (2014) A high resolution predictive model for relict trees in the Mediterranean-mountain forests (Pinus sylvestris L., P. nigra Arnold and Abies pinsapo Boiss.) from the south of Spain: a reliable management tool for reforestation. Forest Ecol Manag 330:105–114.  https://doi.org/10.1016/j.foreco.2014.07.009 CrossRefGoogle Scholar
  40. López-Tirado J, Hidalgo PJ (2016a) Ecological niche modelling of three Mediterranean pine species in the south of Spain: a tool for afforestation/reforestation programs in the twenty-first century. New For 47(3):411–429.  https://doi.org/10.1007/s11056-015-9523-3 CrossRefGoogle Scholar
  41. López-Tirado J, Hidalgo PJ (2016b) Predictive modelling of climax oak trees in southern Spain: insights in a scenario of global change. Plant Ecol 217(4):451–463.  https://doi.org/10.1007/s11258-016-0589-6 CrossRefGoogle Scholar
  42. Martins CMC, Mesquita SMM, Vaz WLC (1999) Cuticular waxes of the Holm (Quercus ilex L. subsp. ballota (Desf.) Samp.) and Cork (Q. suber L.) oaks. Phytochem Anal 10(1):1–5.  https://doi.org/10.1002/(SICI)1099-1565(199901/02)10:1<1::AID-PCA420>3.0.CO;2-J CrossRefGoogle Scholar
  43. Mikolajczak A, Marechal D, Sanz T, Iseninann M, Thierion V, Luque S (2015) Modelling spatial distributions of alpine vegetation: a graph theory approach to delineate ecologically-consistent species assemblages. Ecological Informatics 30:196–202.  https://doi.org/10.1016/j.ecoinf.2015.09.005 CrossRefGoogle Scholar
  44. Montero M (1997) Breve descripción del proceso repoblador en España (1940–1995). Legno Celulosa Carta 4:35–42Google Scholar
  45. Morales F, Abadía A, Abadía J, Montserrat G, Gil Pelegrín E (2002) Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees 16(7):504–510.  https://doi.org/10.1007/s00468-002-0195-1 CrossRefGoogle Scholar
  46. Morán-Ordóñez A, Lahoz-Monfort JJ, Elith J, Wintle BA (2016) Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions? Glob Ecol Biogeogr 26(3):371–384.  https://doi.org/10.1111/geb.12545 CrossRefGoogle Scholar
  47. Muñoz Álvarez JM (2010) Vegetación de la Reserva de la Biosfera y de los Espacios Naturales de Sierra Morena. Consejería de Medio Ambiente, Junta de Andalucía, Córdoba, SpainGoogle Scholar
  48. Naudiyal N, Schmerbeck J (2016) The changing Himalayan landscape: pine-oak forest dynamics and the supply of ecosystem services. J For Res 28(3):431–443.  https://doi.org/10.1007/s11676-016-0338-7 CrossRefGoogle Scholar
  49. Nicolaci A, Travaglini D, Menguzzato G, Nocentini S, Veltri A, Iovino F (2014) Ecological and anthropogenic drivers of Calabrian pine (Pinus nigra JF Arn. ssp. laricio (Poiret) Maire) distribution in the Sila mountain range. iForest 8:497–508CrossRefGoogle Scholar
  50. Palero FJ, Both RA, Arribas A, Boyce AJ, Mangas J, Martin-Izard A (2003) Geology and metallogenic evolution of the polymetallic deposits of the Alcudia Valley mineral field, eastern Sierra Morena, Spain. Econ Geol 98:577–605Google Scholar
  51. Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2012) Factors driving growth responses to drought in Mediterranean forests. Eur J Forest Res 131(6):1797–1807.  https://doi.org/10.1007/s10342-012-0633-6 CrossRefGoogle Scholar
  52. Peguero-Pina JJ, Sancho-Knapik D, Morales F, Flexas J, Gil-Pelegrín E (2009) Differential photosynthetic performance and photoprotection mechanisms of three Mediterranean evergreen oaks under severe drought stress. Funct Plant Biol 36(5):453–462.  https://doi.org/10.1071/FP08297 CrossRefGoogle Scholar
  53. Planton S, Lionello P, Artale V, Aznar R, Carrillo A, Colin J, Congedi L, Dubois C, Elizalde A, Gualdi S, Hertig E, Jacobeit J, Jordà G, Li L, Mariotti A, Piani C, Ruti P, Sanchez-Gomez E, Sannino G, Sevault F, Somot S, Tsimplis M (2012) 8—The climate of the Mediterranean region in future climate projections. In: Lionello P (ed) The climate of the Mediterranean region. Elsevier, Oxford, pp 449–502.  https://doi.org/10.1016/B978-0-12-416042-2.00008-2 CrossRefGoogle Scholar
  54. Pottier J, Dubuis A, Pellissier L, Maiorano L, Rossier L, Randin CF, Vittoz P, Guisan A (2013) The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Glob Ecol Biogeogr 22(1):52–63.  https://doi.org/10.1111/j.1466-8238.2012.00790.x CrossRefGoogle Scholar
  55. Quero JL, Villar R, Marañón T, Murillo A, Zamora R (2008) Plastic response to light and water in four Mediterranean Quercus species (Fagaceae). Rev Chil Hist Nat 81:373–385CrossRefGoogle Scholar
  56. Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. ICONA, Serie Técnica, Madrid, SpainGoogle Scholar
  57. Rosenbaum G, Lister GS, Duboz C (2002) Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J Virtual Explor 8:107–130Google Scholar
  58. Ruiz de la Torre J, García JI, Oria de Rueda JA (1994) Gestión y conservación de los pinsapares andaluces. Asociación forestal andaluza, Cádiz, SpainGoogle Scholar
  59. Sánchez-Salguero R, Navarro-Cerrillo RM, Camarero JJ, Fernández-Cancio A (2012) Selective drought-induced decline of pine species in southeastern Spain. Clim Chang 113(3-4):767–785.  https://doi.org/10.1007/s10584-011-0372-6 CrossRefGoogle Scholar
  60. Sardans J, Peñuelas J, Rodà F (2006a) Plasticity of leaf morphologic traits, leaf nutrient content, and water capture in the Mediterranean evergreen oak Quercus ilex subsp. ballota in response to fertilization and changes in competitive conditions. Ecoscience 13(2):258–270.  https://doi.org/10.2980/i1195-6860-13-2-258.1 CrossRefGoogle Scholar
  61. Sardans J, Rodà F, Peñuelas J (2006b) Effects of a nutrient pulse supply on nutrient status of the Mediterranean trees Quercus ilex subsp. ballota and Pinus halepensis on different soils and under different competitive pressure. Trees 20(5):619–632.  https://doi.org/10.1007/s00468-006-0077-z CrossRefGoogle Scholar
  62. Schröter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337.  https://doi.org/10.1126/science.1115233 CrossRefPubMedGoogle Scholar
  63. Siles G, Alcántara JM, Rey PJ, Bastida JM (2010) Defining a target map of native species assemblages for restoration. Restor Ecol 18:439–448CrossRefGoogle Scholar
  64. Smit C, Díaz M, Jansen P (2009) Establishment limitation of holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) in a Mediterranean savanna–forest ecosystem. Ann For Sci 66(5):511.  https://doi.org/10.1051/forest/2009028 CrossRefGoogle Scholar
  65. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293.  https://doi.org/10.1126/science.3287615 CrossRefPubMedGoogle Scholar
  66. Thorson JT, Ianelli JN, Larsen EA, Ries L, Scheuerell MD, Szuwalski C, Zipkin EF (2016) Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. Glob Ecol Biogeogr 25(9):1144–1158.  https://doi.org/10.1111/geb.12464 CrossRefGoogle Scholar
  67. Urbieta IR (2008) Estructura, dinámica y regeneración de los bosques mixtos de alcornoque (Quercus suber L.) y quejigo moruno (Quercus canariensis Willd.) del sur de la Península Ibérica: una aproximación multiescala. Dissertation, University of Alcala, SpainGoogle Scholar
  68. Vacchiano G, Garbarino M, Lingua E, Motta R (2016) Forest dynamics and disturbance regimes in the Italian Apennines. Forest Ecol Manag 388:57–66.  https://doi.org/10.1016/j.foreco.2016.10.033 CrossRefGoogle Scholar
  69. Valle F (coord.) (2004) Modelos de restauración forestal. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, SpainGoogle Scholar
  70. Vessella F, Simeone MC, Schirone B (2015) Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time. Quaternary Sci Rev 119:85–93.  https://doi.org/10.1016/j.quascirev.2015.04.018 CrossRefGoogle Scholar
  71. Villa Díaz Á (2013) The agrarian landscapes of large farms in andalucía: ranches, estates and vineyards in the Guadalquivir countryside. Revista de Estudios Regionales 96:293–319Google Scholar
  72. Vitale M, Mancini M, Matteucci G, Francesconi F, Valenti R, Attorre F (2012) Model-based assessment of ecological adaptations of three forest tree species growing in Italy and impact on carbon and water balance at national scale under current and future climate scenarios. iForest 5(5):235–246.  https://doi.org/10.3832/ifor0634-005 CrossRefGoogle Scholar
  73. Vizcaíno-Palomar N, Ibáñez I, González-Martínez SC, Zavala MA, Alía R (2016) Adaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients. Ecol Evol 6(21):7561–7573.  https://doi.org/10.1002/ece3.2153 CrossRefGoogle Scholar
  74. Watson CS (1996) The vegetational history of the northern Apennines, Italy: information from three new sequences and a review of regional vegetational change. J Biogeogr 23(6):805–841.  https://doi.org/10.1111/j.1365-2699.1996.tb00041.x CrossRefGoogle Scholar
  75. Wheeler D (1996) Spanish climate: regions and diversity. Geogr Rev 10:34–40Google Scholar
  76. Zavala MA, Zea K (2004) Mechanisms maintaining biodiversity in Mediterranean pine-oak forests: insights from a spatial simulation model. Plant Ecol 171(1/2):197–207.  https://doi.org/10.1023/B:VEGE.0000029387.15947.b7 CrossRefGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Integrated Sciences, Faculty of Experimental Sciences, International Campus of Excellence of the Sea (CEIMAR)University of HuelvaHuelvaSpain

Personalised recommendations