The crop of desert truffle depends on agroclimatic parameters during two key annual periods

  • Alberto Andrino
  • Alfonso Navarro-Ródenas
  • José Eduardo Marqués-Gálvez
  • Asunción MorteEmail author
Research Article


Desert truffles have become an alternative agricultural crop in semiarid areas of the Iberian Peninsula due to their much appreciated edible value and their low water requirements for cultivation. Although most studies related to desert truffle production point to the sole importance of precipitation, this work is the first systematic study carried out to characterize whether other important agroclimatic parameters, for example reference evapotranspiration, soil water potential, relative air humidity %, aridity index or air vapour pressure deficit, may have an impact on a desert truffle production in an orchard with mycorrhizal plants of Helianthemum almeriense × Terfezia claveryi for 15 years from the plantation. The results show for the first time that T. claveryi production has two key periods, during its annual cycle: autumn (September to October) and spring (end of March). The aridity index and soil water potential seem to be the most manageable parameters in the field and can be easily controlled by applying irrigation during the abovementioned periods. Agroclimatic parameters can influence the final crop a long time before the desert truffle fruiting season contrary to what happens with other edible mycorrhizal mushrooms. Four different models to manage desert truffle plantations are proposed based on these agroclimatic parameters in order to optimize and stabilize carpophore fructifications over the years.


Terfezia Helianthemum Agroclimatic parameters Precipitation Aridity index 



Authors are grateful to Dr. Janusz Zwiazek for useful comments on the manuscript, to Dr. Frank Schaarschmidt and Dr. Antonio Maurandi’s team for their help and advice in carrying out the statistical analyses, and to Francisco González for providing the crop data of his desert truffle plantation.

Funding information

The authors received financial support from AEI/FEDER, UE (CGL2016-78946-R) and Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia (20866/PI/18). ANR is a recipient of a postdoctoral contract (IJCI-2016-28252) from the Ministerio de Economía y Competitividad (MINECO). JEMG is a recipient of a PhD grant (DI-14-06904) from the Ministerio de Economía y Competitividad (MINECO).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Addinsoft (2018) XLSTAT. Extensión de análisis estadístico para Microsoft ExcelGoogle Scholar
  2. Alcaraz F, Barreña J, Clemente M, González-Garnés J, Rivera D, Ríos S (2008) Manual de interpretación de los hábitats naturales y seminaturales de la Región de Murcia. Tomo 1: hábitats y sistemas de hábitats. Murcia: Dirección General del Medio Natural, Consejería de Desarrollo Sostenible y Ordenación del Territorio, Región de MurciaGoogle Scholar
  3. Ben-Gal A, Agam N, Alchanatis V, Cohen Y, Yermiyahu U, Zipori I et al (2009) Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal imagery. Irrig Sci 27:367–376. CrossRefGoogle Scholar
  4. Baragatti1 M, Grollemund PM, Montpied P, Dupouey JL, Gravier J, Murat C, Le Tacon F (2019) Influence of annual climatic variations, climate changes, and sociological factors on the production of the Périgord black truffle (Tuber melanosporum Vittad.) from 1903–1904 to 1988–1989 in the Vaucluse (France). Mycorrhiza 29:113–125. CrossRefGoogle Scholar
  5. Barrow CJ (1992) World atlas of desertification (United nations environment programme), edited by N. Middleton and D.S.G. Thomas, Edward Arnold, London. isbn:0-340-55512-2Google Scholar
  6. Bordallo JJ (2007) Estudio del ciclo biológico de Terfezia claveryi Chatin. Memoria de Suficiencia Investigadora del Programa de Doctorado de Biología Vegetal. Universidad de Murcia, SpainGoogle Scholar
  7. Bradai L, Bissati S, Chenchouni H (2014) Desert truffles of the North Algerian Sahara: diversity and bioecology. Emir J Food Agric 26(5):425–435. CrossRefGoogle Scholar
  8. Bradai L, Bissati S, Chenchouni H, Amrani K (2015) Effects of climate on the productivity of desert truffles beneath hyper-arid conditions. Int J Biometeorol 59(7):907–915. CrossRefPubMedGoogle Scholar
  9. Breiman L, Ihaka R (1984) Nonlinear discriminant analysis via scaling and ACE: Department of Statistics. University of, CaliforniaGoogle Scholar
  10. Bruhn J, Hall M (2011) Burgundy black truffle cultivation in an agroforestry practice. Agrofor Action, Conference ProceedingsGoogle Scholar
  11. Büntgen U, Egli S, Camarero JJ, Fischer EM, Stobbe U, Kauserud H, Tegel W, Sproll L, Stenseth NC (2012) Drought-induced decline in Mediterranean truffle harvest. Nat Clim Chang 2(12):827–829. CrossRefGoogle Scholar
  12. Büntgen U, Oliach D, Martínez-Peña F, Latorre J, Egli S, Krusic PJ (2019) Black truffle winter production depends on Mediterranean summer precipitation. Environ Res Lett 14(7):074004. CrossRefGoogle Scholar
  13. Flexas J, Diaz-Espejo A, Gago J, Gallé A, Galmés J, Gulías J, Medrano H (2014) Photosynthetic limitations in Mediterranean plants: a review. Environ Exp Bot 103:12–23. CrossRefGoogle Scholar
  14. Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21(1):27–58CrossRefGoogle Scholar
  15. Gutiérrez A (2001) Caracterización, Micorrización y Cultivo en Campo de las Trufas del Desierto. University of Murcia, Murcia, Spain, DissertationGoogle Scholar
  16. Hall IR, Yun W, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21(10):433–438. CrossRefPubMedGoogle Scholar
  17. Honrubia M, Gutiérrez A, Morte A (2001) Desert truffle plantation from southeast Spain. In: Edible Mycorrhizal Mushrooms and Their Cultivation: Proceedings of the Second International Workshop on Edible Mycorrhizal Mushrooms. Christchurch, New Zealand pp 3–5Google Scholar
  18. Honrubia M, Andrino A, Morte A (2014) Preparation and maintenance of both man-planted and wild plots. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A eds. Desert truffles: phylogeny, physiology, distribution and domestication. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 367-387Google Scholar
  19. Johnston FR, Boyland JE, Meadows M, Shale E (1999) Some properties of a simple moving average when applied to forecasting a time series. J Oper Res Soc 50(12):1267–1271. CrossRefGoogle Scholar
  20. Le Tacon F, Delmas J, Gleyze R, Bouchard D (1982) Effect of soil water regime and fertilization on fructification of the black truffle of Perigord (Tuber melanosporum Vitt.) in south east of France. Acta Oecol, Oecol Appl 3(4):291–306Google Scholar
  21. Le Tacon F, Marçais B, Courvoisier M, Murat C, Montpied P, Becker M (2014) Climatic variations explain annual fluctuations in French ‘Périgord black truffle’ wholesale markets but do not explain the decrease in ‘black truffle’ production over the last 48 years. Mycorrhiza 24(1):115–125. CrossRefGoogle Scholar
  22. León-Sánchez L, Nicolás E, Nortes PA, Maestre FT, Querejeta JI (2016) Photosynthesis and growth reduction with warming are driven by nonstomatal limitations in a Mediterranean semi-arid shrub. Ecol Evol 6(9):2725–2738. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mandeel QA, Al-Laith AAA (2007) Ethnomycological aspects of the desert truffle among native Bahraini and non-Bahraini peoples of the Kingdom of Bahrain. J Ethnopharmacol 110(1):118–129. CrossRefPubMedGoogle Scholar
  24. Martínez-Peña F, de-Miguel S, Pukkala T, Bonet JA, Ortega-Martínez P, Aldea J, Martínez de Aragón J (2012) Yield models for ectomycorrhizal mushrooms in Pinus sylvestris forests with special focus on Boletus edulis and Lactarius group deliciosus. For Ecol Manage 282:63–69. CrossRefGoogle Scholar
  25. Marqués-Gálvez J, Navarro-Ródenas A, Nicolás E, Morte A (2016) Combined effect of vapour pressure deficit and irrigation on desert truffle mycorrhizal plants. VIII International Workshop on Edible Mycorrhizal Mushroom, Cahors (France)Google Scholar
  26. Mehmet A (2017) Ethnomycological aspects of traditional usage and indigenous knowledge about the arid-semi arid truffles consumed by the residents of the eastern anatolia region of Turkey. Gazi Univ J Sci 30(4):57–70Google Scholar
  27. Morte A, Andrino A, Honrubia M, Navarro-Ródenas A (2012) Terfezia cultivation in arid and semiarid soils. In: Zambonelli A, Bonito GM eds. Edible Ectomycorrhizal Mushrooms: Current Knowledge and Future Prospects. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 241–263. Google Scholar
  28. Morte A, Honrubia M, Gutiérrez A (2008) Biotechnology and cultivation of desert truffles. In: Varma A, ed. Mycorrhiza 3rd Edition. Springer Berlin Heidelberg pp. 467–483. CrossRefGoogle Scholar
  29. Morte A, Navarro-Ródenas A, Nicolás E (2010) Physiological parameters of desert truffle mycorrhizal Helianthemun almeriense plants cultivated in orchards under water deficit conditions. Symbiosis. 52(2–3):133–139. CrossRefGoogle Scholar
  30. Morte A, Pérez-Gilabert M, Gutiérrez A, Arenas F, Marqués-Gálvez JE, Bordallo JJ, Rodríguez A, Berná LM, Lozano-Carrillo C, Navarro-Ródenas A (2017) Basic and applied research for desert truffle cultivation. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer International Publishing, Cham, pp 23–42. CrossRefGoogle Scholar
  31. Navarro-Ródenas A, Bárzana G, Nicolás E, Carra A, Schubert A, Morte A (2013) Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. Mol Plant-Microbe Interact 26(9):1068–1078. CrossRefPubMedGoogle Scholar
  32. Navarro-Ródenas A, Nicolas E, Morte A (2015) Effect of irrigation on desert truffle mycorrhizal plants in field. XXI Reunión de la Sociedad Española de Fisiologia Vegetal. Toledo, (Spain)Google Scholar
  33. Navarro-Ródenas A, Berná LM, Lozano-Carrillo C, Andrino A, Morte A (2016) Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions. Mycorrhiza 26(7):769–779. CrossRefPubMedGoogle Scholar
  34. Navarro-Ródenas A, Ruíz-Lozano JM, Kaldenhoff R, Morte A (2012) The aquaporin TcAQP1 of the desert Truffle Terfezia claveryi is a membrane pore for water and CO2 transport. Mol Plant-Microbe Interact 25(2):259–266. CrossRefPubMedGoogle Scholar
  35. Olivier JPM, Savignac JC, Sourzat P (2012) Truffe et trufficulture. FANLAC Editions, Périgueux, FranceGoogle Scholar
  36. Pacioni G, Leonardi M, Di Carlo P, Ranalli D, Zinni A, De Laurentiis G (2014) Instrumental monitoring of the birth and development of truffles in a Tuber melanosporum orchard. Mycorrhiza 24(1):65–72. CrossRefGoogle Scholar
  37. Scheffer F (2002) Lehrbuch der Bodenkunde, Scheffer, Schachtschabel, 5th edn. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  38. Teramoto M, Wu B, Hogetsu T (2012) Transfer of 14C-photosynthate to the sporocarp of an ectomycorrhizal fungus Laccaria amethystina. Mycorrhiza 22(3):219–225CrossRefGoogle Scholar
  39. Volpato G, Rossi D, Dentoni D (2013) A reward for patience and suffering: Ethnomycology and commodification of desert truffles among Sahrawi refugees and nomads of Western Sahara. Econ Bot 67(2):147–160CrossRefGoogle Scholar
  40. Xu H, Navarro-Ródenas A, Cooke JEK, Zwiazek JJ (2016) Transcript profiling of aquaporins during basidiocarp development in Laccaria bicolor ectomycorrhizal with Picea glauca. Mycorrhiza 26(1):19–31. CrossRefPubMedGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Soil Science, Leibniz Universität HannoverHanoverGermany
  2. 2.Departamento de Biología Vegetal (Botánica), Facultad de BiologíaUniversidad de MurciaMurciaSpain
  3. 3.Thader Biotechnology SL, Ed. CAIDMurciaSpain

Personalised recommendations